Math, asked by princess8189, 1 year ago

Find the centroid of the triangle whose vertices are (2,4) (6,4) (2,0)​

Answers

Answered by emmanenisanthoshrao
0

Answer:

G(x,y) = (10/3, 8/3).

Step-by-step explanation:

centroid G(x,y) =

 (\frac{x1 + x2 + x3}{3}  \frac{y1 + y2 + y3}{3} )

= ((2+6+2)/3, (4+4+0)/3)

G(x,y) = (10/3, 8/3).

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(\frac{10}{3},\frac{8}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (2,4)} \\  \\ : \implies  \text{Coordinate \: of \: B = (6,4)} \\  \\ : \implies  \text{Coordinate \: of \: C = (2,0)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{ 2 +6 + 2}{3} \\  \\ : \implies x = \frac{10}{3}  \\  \\  \green{: \implies x =\frac{10}{3}} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 4+4+0}{3} \\  \\ : \implies y = \frac{8+0}{3}  \\  \\  \green{: \implies y =\frac{8}{3}} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(\frac{10}{3},\frac{8}{3})}

Similar questions