Math, asked by redhanyauma, 4 months ago

find the centroid of the triangle whose vertices are (2,-5),(5,11), and (9,9)​

Answers

Answered by MagicalLove
98

Step-by-step explanation:

 \bf \huge \bigstar \underline{ \blue{AnswEr:-}}

 \huge\bf† \underline \red{Given :}†

 \sf \green {‡ \:  \:( x_1 \:  \: y_1)= (2 \:  \:  - 5)}

 \sf \green {‡ \:  \:( x_2 \:  \: y_2)= (5 \:  \:  11)}

 \sf \green {‡ \:  \:( x_3 \:  \: y_3)= (9 \:  \:  9)}

 \bf \huge \: †  \: \underline \red{Formula \:  \:  Used} \: †

 \huge  \bf »C = \left  (\dfrac{x_1 + x_2 + x_3}{3} \right)\left  (\dfrac{y_1 + y_2 + y_3}{3} \right)

where ,

 \sf \large \: →C \:  \: is \:  \: a \:  \: centroid \:  \: of \:  \: the \:  \:  \triangle

→ \sf \large \: {x_1 + x_2 + x_3} \:  \: are \:  \: the \:  \: x \:  \: coordinates \:  \: of \:  \: the \:  \: vertices \:  \: of \:  \triangle

→ \sf \large \: {y_1 + y_2 + y_3} \:  \: are \:  \: the \:  \: x \:  \: coordinates \:  \: of \:  \: the \:  \: vertices \:  \: of \:  \triangle

\huge \leadsto  \tt \: C = \frac{2 + 5 + 9}{3}  , \frac{ - 5 + 11 + 9}{3}

\huge \leadsto  \tt \: C =  \frac{16}{3} ,5

\huge \therefore \tt \purple{Centroid \:  \: of \:  \: the \:  \triangle = \:  \frac{16}{3}  ,5}

Attachments:

viratdhoni187: guopd
MagicalLove: Nandri di !!
viratdhoni187: it's ok sweetie ❤️
Similar questions