Math, asked by palakchordiya123, 6 months ago

Find the centroid of the triangle whose vertices are (3, -5) (4, 3) (11, -4) Solution: Let A (3, -5); B (4, 3); C (11, -4) Suppose (x₁, y₁); (x₂, y₂); (x₃, y₃) Let G (x, y) be the centroid ∴ x= (x₁+x₂+x₃)/3 ∴ y= (y₁+y₂+y₃)/3 ∴x=____ ∴y= _____*​

Answers

Answered by VishnuPriya2801
41

Answer:-

Given:

Vertices of the triangle are (3 , - 5) , (4 , 3) & (11 , - 4).

We know that,

Centroid of a triangle G(x , y) = [ (x₁ + x₂ + x₃) / 3 , (y₁ + y₂ + y₃) / 3 ]

Let,

  • x₁ = 3
  • x₂ = 4
  • x₃ = 11
  • y₁ = - 5
  • y₂ = 3
  • y₃ = - 4.

So,

⟶ G(x , y) = [ (3 + 4 + 11) / 3 , (- 5 + 3 - 4) / 3 ]

⟶ G(x , y) = [ 18/3 , - 6/3 ]

⟶ G(x , y) = ( 6 , - 2)

The centroid of the triangle is (6 , - 2).

Answered by SaI20065
64

\huge\underline\sf{Solution:-}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf (3,-5)$}\put(0.5,-0.3){$\bf (11,-4)$}\put(5.2,-0.3){$\bf (4,3)$}\end{picture}

 \sf{Vertices \:  of  \: the \:  triangle \:  are  \: (3,-5), \: (4,3)  \:  (11, - 4).} \\  \\ </p><p></p><p> \sf{We  \: know \:  that}

 \\  \sf{G(x, y) [  \frac{x, + x2 + x3}{3}, \frac{ y + y2 + y3}{3}]}

 \sf \boxed{X= 3} \\  \\ </p><p></p><p> \sf \boxed{X2 = 4} \\  \\ </p><p></p><p> \sf \boxed{ X3 = 11} \\  \\ </p><p></p><p> \sf \boxed{Y= - 5} \\  \\ </p><p></p><p> \sf \boxed{Y2 = 3} \\  \\ </p><p></p><p> \sf \boxed{Y3 = - 4}

 \\  \sf{G(x, y) =   \frac{(3 + 4 + 11)}{3},  \frac{( - 5 + 3 - 4)}{3}}

 \\  \sf{G(x , y) =   \frac{18}{3}  ,  \frac{ - 6}{3}} \\  \\ </p><p></p><p> \sf{G(x , y) = (6,-2)}

\boxed{The  \: centroid \:  of  \: the  \: triangle \:  is \:  (6,-2)}


palakchordiya123: matlab ?
Similar questions