Math, asked by bhavyasri031, 9 months ago

Find the centroid of the triangle, whose vertices are (-4,4), (-2,2) and (6-6)​

Answers

Answered by pandurao187
1

Answer:

centeriod = x1 + x2 + x3 \div 3 \:  \: y1 + y2 + y3 \div 3 \\  =  - 4 + ( - 2) + 6 \div 3 \:  \: 4 + 2 + ( - 6)  \div 3 \\  = 0  \div 3 \:  \:  \: 0 \div 3 \\  = 0 \:  \: 0

Answered by Anonymous
10

\red{\bold{\underline{\underline{Answer}}}}

\tt\green{\therefore{Centroid=(0,0)}}

\pink{\bold{\underline{Step-by-step\:explanation}}}

  • Given

 \tt  \implies Coordinate \: of \: p = (-4,4) \\  \\ \tt  \implies Coordinate \: of \: q= (-2,2) \\  \\ \tt  \implies Coordinate \: of \: r= (6,-6)

  • To find

 \tt  \implies Centroid = ?

For finding value of centroid :

 \tt \implies x =  \frac{ x_{1} + x_{2}   +  x_{3}  }{3}  \\  \\ \tt \implies x = \frac{-4 -2 +6}{3}  \\  \\ \tt \implies x = 0  \\  \\ \tt \implies y=\frac{ y_{1} + y_{2}   +  y_{3}  }{3} \\  \\\tt \implies y=  \frac{4 + 2-6}{3}  \\  \\ \tt \implies y= 0  \\  \\   \green{\tt \therefore Centroid \: is \:  (0,0)}

Similar questions