Math, asked by suniyalrai1559, 1 year ago

Find the centroid of the triangle whose vertices are (4,-8) (-9,7) and (8,13)

Answers

Answered by Vedang2004
2

Step-by-step explanation:

Centroid formula=(x1+x2+x3/3, y1+y2+y3/3)

=4-9+8/3,-8+7+13/3

=(1,4)

Answered by BrainlyConqueror0901
13

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(1,4)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (4,-8)} \\  \\ : \implies  \text{Coordinate \: of \: B = (-9,7)} \\  \\ : \implies  \text{Coordinate \: of \: C = (8,13)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{  4 +(-9)+ 8}{3} \\  \\ : \implies x = \frac{12-9}{3}  \\  \\  \green{: \implies x =1}\\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{(-8 ) +7+13}{3} \\  \\ : \implies y = \frac{20-8}{3}  \\  \\  \green{: \implies y =4} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(1,4)}

Similar questions