Math, asked by sraghavsharma4711, 1 year ago

Find the centroid of the triangle whose vertices are (5,1),(3,-4)and (1,8)

Answers

Answered by sarthak9790
1

5+3+1÷3=3

1-4+8÷3=5/3

then centroid is (3, 5/3)

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(3,\frac{5}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (5,1)} \\  \\ : \implies  \text{Coordinate \: of \: B = (3,-4)} \\  \\ : \implies  \text{Coordinate \: of \: C = (1,8)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{ 5 +3 + 1}{3} \\  \\ : \implies x = \frac{9}{3}  \\  \\  \green{: \implies x =3} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 1  +(-4)+8}{3} \\  \\ : \implies y = \frac{9-4}{3}  \\  \\  \green{: \implies y =\frac{5}{3}} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(3,\frac{5}{3})}

Similar questions