Math, asked by sanafarheensuzpdxf23, 1 year ago

Find the centroid of the triangle whose vertices are (6,2), (0,0) and (4, -7)

Answers

Answered by raghavarora116pd9yd7
15
formula of centroid of triangle is x1+x2+x3 upon 3 and y1+y2+y3 upon 3
x=10/3
y=-5/3
Answered by BrainlyConqueror0901
32

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(\frac{10}{3},\frac{-5}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline  \bold{Given : }} \\   : \implies  \text{Coordinate \: of \: A = (6,2)} \\  \\ : \implies  \text{Coordinate \: of \: B = (0,0)} \\  \\ : \implies  \text{Coordinate \: of \: C = (4,-7)} \\  \\ \red{ \underline  \bold{To \: Find : }} \\   : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \circ  \:   \text{Centroid \: of \: triangle(G}) \\ \\  \circ \:   \text{For \: x  }= \frac{ x_{1} +  x_{2} +  x_{3}  }{3}  \\  \\ \circ \:   \text{For \: y} = \frac{ y_{1} +  y_{2} +  y_{3}  }{3}  \\  \\  \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\   \bold{For \: x}\\   :  \implies x = \frac{ x_{1} +  x_{2} +  x_{3}  }{3} \\  \\   : \implies x =  \frac{  6 + 0 + 4}{3} \\  \\ : \implies x = \frac{6+4}{3}  \\  \\  \green{: \implies x =\frac{10}{3}} \\  \\  \bold{For \: y}\\   :  \implies y= \frac{ y_{1} +  y_{2} +  y_{3}  }{3} \\  \\   : \implies y=  \frac{ 2  +0+(-7)}{3} \\  \\ : \implies y = \frac{2-7}{3}  \\  \\  \green{: \implies y =\frac{-5}{3}} \\  \\    \green{\therefore  \text{Coordinate \: of \: centroid(G) = }(\frac{10}{3},\frac{-5}{3})}

Similar questions