Math, asked by padmaramesh1506, 11 months ago

find the centroid of the triangle whose vertices are A(2,3) B(7,-8) C(0,-1)​

Answers

Answered by shaikhtamanna208
0

Answer:

centroid of triangle is ( 2+7++0)/3 and (3+(-8)+(-1))/3 is (3, -2)

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(3,-2)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (2,3)} \\ \\ : \implies \text{Coordinate \: of \: B = (7,-8)} \\ \\ : \implies \text{Coordinate \: of \: C = (0,-1)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{2+7 + 0}{3} \\ \\ : \implies x = \frac{9}{3} \\ \\ \green{: \implies x =3} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{ 3+(-8)+(-1)}{3} \\ \\ : \implies y = \frac{-6}{3} \\ \\ \green{: \implies y =-2} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(3,-2)}

Similar questions