French, asked by arjun637181, 9 months ago

Find the Centroid of the triangle whose vertices are x(1,4),y(-1,1)&z(3,-2).​

Answers

Answered by Anonymous
2

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(1,4), \: y(-1,1) \: and \: z(3,-2)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(1,4) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(-1,1) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(3,-2) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{1 + ( - 1) + 3}{3}) ,( \frac{4 + 1 - 2}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{0 + 3}{3}) , (\frac{5 - 2}{3} ) \\  \\ \rightarrow \sf \: Centroid = ( \frac{3}{3} ),( \frac{3}{3} ) \\  \\ \rightarrow \sf \: Centroid = (1,1)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (1,1).

Answered by mankirai3gmailcom
0

\large{\red{\bold{\underline{Given:}}}}

Given:

\sf \: Coordinates \: of \: the \: vertices \: are: \: x(1,4), \: y(-1,1) \: and \: z(3,-2)Coordinatesoftheverticesare:x(1,4),y(−1,1)andz(3,−2)

\large{\green{\bold{\underline{To \: Find:}}}}

ToFind:

\sf \: Centroid \: of \: the \: triangleCentroidofthetriangle

\begin{gathered}\large{\blue{\bold{\underline{Formula \: Used:}}}} \\ \\ \sf \:Coordinates \: of \:Centroid = \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})\end{gathered}

FormulaUsed:

CoordinatesofCentroid=(

3

x

1

+x

2

+x

3

),(

3

y

1

+y

2

+y

3

)

\begin{gathered}\large{\red{\bold{\underline{Solution:}}}} \\ \\ \: \sf \: On \: considering \: the \: respective \: coordinates \: as :\end{gathered}

Solution:

Onconsideringtherespectivecoordinatesas:

\begin{gathered}\sf \: x(1,4) \: arrow \: (x_{1}, y_{1}) \\ \\\sf \: y(-1,1) \: arrow \: (x_{2}, y_{2}) \\ \\ \sf \: z(3,-2) \: arrow \: (x_{3}, y_{3})\end{gathered}

x(1,4)arrow(x

1

,y

1

)

y(−1,1)arrow(x

2

,y

2

)

z(3,−2)arrow(x

3

,y

3

)

\begin{gathered}\large{\pink{\bold{\underline{Now:}}}} \\ \\ arrow \: \sf \: Centroid = ( \frac{1 + ( - 1) + 3}{3}) ,( \frac{4 + 1 - 2}{3} ) \\ \\ arrow \sf \: Centroid = ( \frac{0 + 3}{3}) , (\frac{5 - 2}{3} ) \\ \\ arrow \sf \: Centroid = ( \frac{3}{3} ),( \frac{3}{3} ) \\ \\ arrow \sf \: Centroid = (1,1)\end{gathered}

Now:

arrowCentroid=(

3

1+(−1)+3

),(

3

4+1−2

)

arrowCentroid=(

3

0+3

),(

3

5−2

)

arrowCentroid=(

3

3

),(

3

3

)

arrowCentroid=(1,1)

\begin{gathered}\large{\orange{\bold{\underline{Therefore:}}}} \\ \\ \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (1,1).\end{gathered}

Therefore:

ThecoordinatesofCentroidofthetriangle

is(1,1).

Similar questions