Math, asked by imanandraj8, 5 months ago

Find the circumference of a circle whose radius is:-
a)10.5
b)3.5​

Answers

Answered by Auяoяà
18

⛦Question :

To find the circumference of circle for the given radius.

⛦ Given :

  • 1st Radius = 10.5
  • 2nd Radius = 3.5

⛦ Solution :

a) Radius = 10.5

We know that,

★Circumference of circle = 2πr

•Putting the value,

\sf{Circumference_{(circle)}=}\sf{2\times}\dfrac{22}{7}\times{10.5}

\sf{Circumference_{(circle)}=}\dfrac{44\times\cancel{105}^{ \ 21}}{7\times\cancel{10}^{ \ 2}}

\sf{Circumference_{(circle)}=}\dfrac{\cancel{44}^{ 22}\times\cancel{21}^3}{\cancel{7}^{ \ 1}\times\cancel2^{ \ 1}}

\sf{Circumference_{(circle)}=}\sf{22\times3}

\sf{Circumference_{(circle)}}\sf{=66}

_________________________

b) Radius = 3.5

•Putting the value,

\sf{Circumference_{(circle)}=}\sf{2\times}\dfrac{22}{7}\times{3.5}

\sf{Circumference_{(circle)}=}\dfrac{\cancel{44}^{22}\times\cancel{35}^5}{\cancel7^1\times\cancel{10}^5}

\sf{Circumference_{(circle)}=}\dfrac{22\times5}{5}

\sf{Circumference_{(circle)}=}\dfrac{\cancel{110}^{22}}{\cancel{5}^1}

\sf{Circumference_{(circle)}}\sf{=22}

----------------

Therefore,

Final Answer :

  • a) = 66
  • b) = 22

╍╍╍╍╍╍╍╍╍╍╍╍╍╍

More Information :

You must know that :

•Value of π(pie) = \dfrac{22}{7}

•Diameter of circle = 2r = 2 × r

•Area of circle = πr²

Answered by INSIDI0US
178

Step-by-step explanation:

\frak Given = \begin{cases} &\sf{The\ circumference\ of\ a\ circle\ whose\ radius\ is:-} \\ &\sf{a).\ 10.5} \\ &\sf{b). 3.5} \end{cases}

To find:- We have to find the circumference of a circle ?

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {\pink{\underline{Circumference_{(circle)}\ =\ 2πr.}}}

__________________

a). 10.5

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {2\ ×\ \dfrac{22}{7}\ ×\ 10.5} \\ \\ \sf : \implies {\dfrac{44\ ×\ 105}{7\ ×\ 10}} \\ \\ \sf : \implies {\dfrac{44\ ×\ 21}{7\ ×\ 2}} \\ \\ \sf : \implies {22\ ×\ 3} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf Circumference\ =\ 66.}}}}\bigstar

 \sf \therefore {\underline{Hence,\ the\ required\ circumference\ is\ 66.}}

b). 3.5

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {2\ ×\ \dfrac{22}{7}\ ×\ 3.5} \\ \\ \sf : \implies {\dfrac{44\ ×\ 35}{7\ ×\ 10}} \\ \\ \sf : \implies {\dfrac{22\ ×\ 5}{5}} \\ \\ \sf : \implies {\cancel \dfrac{110}{5}} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf Circumference\ =\ 22.}}}}\bigstar

 \sf \therefore {\underline{Hence,\ the\ required\ circumference\ is\ 22.}}

 \frak{\underline{\underline{\dag Hence,\ the\ required\ circumferences\ are:-}}}

 \sf : \implies {a).\ 66.}

 \sf : \implies {b).\ 22.}

Similar questions