Math, asked by mg9919, 1 year ago

find the circumstance of the circle whose area is 36times the area of circle with diameter 10.5cm.



Answers

Answered by EliteSoul
118

Answer:

{\boxed{\rm{Circumference =198\: cm \: \: [Approx.] }}}

Step-by-step explanation:

Given that,

  • Area is 36 times of the area of a circle with diameter 10.5 cm
  • Circumference = ?

Formula used:-

{\boxed{\bold\green{Area\:of\:circle=\pi {r}^{2} }}}

{\boxed{\bold\purple{Circumference = 2\pi r }}}

\tt Radius =\frac{diameter}{2} \\\rightarrow\tt Radius = \frac{10.5}{2} \\\rightarrow{\boxed{\bold\red{Radius = 5.25\: cm}}}

\tt According\:to\:question:-

\rightarrow\rm Area_1 =36 \times  Area_2 \\\rightarrow\rm Area_1 = 36\times \pi \times {5.25}^{2} \\\rightarrow\rm Area_1 = 36 \times 3.1416 \times 27.5625 \\\rightarrow{\boxed{\bold\green {Area_1 = 3118 \:{cm}^{2} }}}

_______________________

\rm Now, 3118 = 3.1416 \times {r}^{2} \\\rightarrow\rm {r}^{2} = \frac{3118}{3.1416} \\\rightarrow\rm {r}^{2} = 992.5\:cm \\\rightarrow\rm r =\sqrt{992.5}\:cm \\\rightarrow{\boxed{\bold\green{ r = 31.5\:cm \: \: [Approx.]}}}

\rm So, circumference = 2\pi r \\\rightarrow\rm Circumference = 2 \times 3.1416 \times 31.5 \\\rightarrow{\boxed{\bold\purple {Circumference = 198 \:cm \: \: \: [Approx.]}}}

Answered by TRISHNADEVI
53

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

FORMULA USED :-

\boxed{\red{\bold{\: Area \: \: of \: \: a \: \: circle \: = \pi \: r {}^{2}}}}

\boxed{\red{\bold{\: Area \: \: of \: \: a \: \: circle \: = 2 \:  \pi \: r }}}

________________________________________________

 \underline{ \mathfrak{ \:  \: Given, \:  \: }} \\  \\  \mathtt{Diameter  \:  \: of  \:  \: the \:  \:  first  \:  \: circle, d_1 = 10.5 cm} \\  \\  \mathtt{ \therefore \:  Radius  \:  \: of  \:  \: the \:  \:  first \:  \:  circle, r_1 =  \frac{10.5}{2} } \\  \\  \mathtt{ \therefore \:  \: Area \:  \:  of  \:  \: the \:  \:  first  \:  \: circle, A_1 = \pi \: (r_1) {}^{2} } \\  \\  \mathtt{ =  \frac{22}{7} \times ( \frac{10.5}{2}  ) {}^{2}  \:  \: cm {}^{2} } \\  \\  \mathtt{ =  \frac{22}{7}  \times  \frac{110.25}{4} \: cm {}^{2} } \\  \\  \mathtt{ =  \frac{2,425.5}{28} \:  \: cm {}^{2}  } \\  \\  \mathtt{ = 86.625 \:  \: cm {}^{2} } \:

 \underline{ \mathfrak{ \:  \: Suppose, \:  \: }} \\  \\  \mathtt{The \:  radius \:  \:  of  \:  \: the  \:  \: second \:  \:  circle = r_2}</p><p></p><p></p><p></p><p>

 \mathtt{ \therefore \:  \: Area  \:  \: of  \:  \: the \:  \:  second \:  \:  circle = 36  \:  \: times  \:  \: of  \:  \: } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{the  \:  \: area  \:  \: of  \:  \: the  \:  \: first \:  \:  circle} \\  \\  \mathtt{ \:  \: \Longrightarrow  \: A_2=36 \times A_1} \\  \\ \mathtt{ \:  \: \Longrightarrow  \: A_2=36 \times 86.625} \\  \\ \mathtt{ \:  \: \Longrightarrow  \: A_2=3118.5} \\  \\  \mathtt{ \:  \: \Longrightarrow \: \pi  \: (r_2) {}^{2} = 3118.5 } \\  \\ \mathtt{ \:  \: \Longrightarrow \:  \frac{22}{7}  \times  \: (r_2) {}^{2} = 3118.5 } \\  \\ \mathtt{ \:  \: \Longrightarrow \: (r_2) {}^{2} = 3118.5  \times  \frac{7}{22} } \\  \\ \mathtt{ \:  \: \Longrightarrow \:  \: (r_2) {}^{2} =  \frac{21829.5}{22} } \\  \\ \mathtt{ \:  \: \Longrightarrow \:  \: (r_2) {}^{2} =992.25 } \\  \\ \mathtt{ \:  \: \Longrightarrow \:  \: r_2 =  \sqrt{992.25} } \\  \\  \mathtt{ \:  \: \Longrightarrow \:  \: r_2 =31.5   }

\mathtt{The \:  radius \:  \:  of  \:  \: the  \:  \: second \:  \:  circle \:  \: is \:  \:  31.5 \:  \: cm}</p><p></p><p>

 \underline{ \mathfrak{ \:  \: Now, \:  \: }} \\  \\  \mathtt{The  \:  \: circumstances \:   \: of \:  \:  the \:  \:  second  \:  \: } \\   \:  \:  \:  \:  \:  \:  \: \mathtt{circle =2\pi \:  r_2} \\  \\  \:  \:  \:  \:  \:  \:  \: \mathtt{ = (2 \times  \frac{22}{7}  \times 31.5) \: cm} \\  \\  \:  \:  \:  \:  \:  \:  \: \mathtt{ =  \frac{1386}{7} \:  \: cm } \\  \\  \:  \:  \:  \:  \:  \:  \: \mathtt{ = 198 \:  \: cm}

 \:  \:  \:  \:  \text{The  circumstance of the circle whose area} \\  \text{ is 36 \: times  \: the area of circle with diameter} \\  \text{ 10.5 cm \: is \:  \underline{ \: 198 \:  cm} .}

Similar questions