Math, asked by skmittal3793, 5 months ago

Find the cirumcentre of the (5-2)(-1;2)and(2;-1)

Answers

Answered by MysticPetals
5

Rationale : -

We are given with three points of a triangle and are asked to find the circumcentre of the triangle.

Let's name the points as A(5 -2) , B(-1,2) and C(2,-1)

 \bf \: Mid \:  point \:    = ( \dfrac{x1+ x2}{2} ,  \dfrac{y1+ y2}{2} )

 \bf \: Mid \:  point \:  of AB \: = ( \dfrac{4}{2},0)

 \implies \: Mid \:  point \:  of AB \: =(2,0)

 \bf \: Slope =  \dfrac{y2 - y1}{x2 - x1}

Slope \:  of  \: AB \:   =  \dfrac{ 4}{ - 6}

 \implies \bf Slope \:  of \:  AB \:  =  \dfrac{ - 2}{3}

 \bf \:  Slope \:  of \:  perpendicular  \: bisector =  \dfrac{ - 3}{2}

Equation  \: of \:  AB \:  with \:  respect  \: to \:  slope \:  =  \dfrac{ - 3}{2} and \: coordinate \: (2,0)

 \bf \: y - y1 = m(x - x1)

y  =  \dfrac{ - 3}{2} (x - 2)

2y =  - 3x + 6

3x + 2y - 6 = 0 \:  \:  \:  \:  \:  - (1)

 \bf \: Midpoint \:  of  \: AC = ( \dfrac{  7}{2} , \dfrac{ - 3}{2} )

 \bf \: Slope \:  of  \: AC =  \dfrac{ - 1 + 2}{2 - 5}  =  \dfrac{  - 1}{3}

 \bf \: Slope  \:  of \:  perpendicular  \: bisector  \:  =  - 3

 \bf \: equation \:  of  \:  AC\:  with \:  respect \:  to \:  slope \:  and \:  coordinate ( \dfrac{7}{2} , \dfrac{ - 3}{2} )

y  +  \dfrac{3}{2}  =  - 3(x -  \dfrac{7}{2} )

 \dfrac{2y + 3}{2}  =  - 3( \dfrac{2x - 7}{2} )

2y + 3 =  - 6x + 21

6x + 2y - 18= 0 \:  \:  \:  \:  \:  \:  - (2)

By solving equation (1) and (2) ,

The circumcenter of triangle = ( 4 , - 3 )

____________________.

★ Rough calculations of two equations :

3x + 2y = 6 ----- ( 1 )

6x + 2y = 18 ------( 2 )

_________

-3x = - 12

_________

» Therefore x = 4

By Substituting the value of x in equation we get y = - 3

Therefore the point is ( 4 , - 3 )

Similar questions