Math, asked by varshithjitta, 11 months ago

find the co-ordinate of points on the x-axis which are at a distance of 5 units from the point(6,-3)​

Answers

Answered by Sauron
28

Answer:

The points required are (10,0) ans (2,0).

Step-by-step explanation:

Solution :

Co-ordinates of any point in x axis is in form of (x,0)

\sf{(x_1 \: , \: y_1) = (6,  - 3)}

\sf{(x_2 \: , \: y_2) = (x,0)}

Distance is 5 units

\sf{\longrightarrow} \: d =  \sqrt{(x_2 - x_1)^{2} + (y_2 -  y_1)^{2}} \\  \\\sf{\longrightarrow} \: 5 =  \sqrt{(x - 6)^{2} +[0 - (-3)]^{2}} \\  \\ \sf{\longrightarrow} \: 5 = \sqrt{(x - 6)^{2} +[0 - (-3)]^{2}} \\  \\ \sf{\longrightarrow} \: Squaring \: both \: the \: sides \\  \\ \sf{\longrightarrow} \: 25 =  {x}^{2}   - 12x + 36 +9  \\  \\  \sf{\longrightarrow} \:{x}^{2} - 12x + 45 - 25 = 0 \\  \\  \sf{\longrightarrow} \: {x}^{2}  - 12x + 20 = 0 \\  \\ \sf{\longrightarrow} \:  {x}^{2}   - 10x  -  2x + 20 = 0 \\  \\ \sf{\longrightarrow} \: x(x - 10) - 2(x  - 10) = 0 \\  \\ \sf{\longrightarrow} \: (x - 10)(x - 2) = 0 \\  \\  \sf{\longrightarrow} \:x = 10 \:  \:  \: or \:  \:  \: x = 2

Required points = (10,0) ans (2,0)

Therefore, the points required are (10,0) ans (2,0).

Similar questions