Math, asked by msrider, 9 months ago

find the co ordinate of the point of trisection of the line segment joining the points P(3,-1) and Q(-6,5)​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Points are P(3,-1) and Q(-6,5)}

\textbf{To find:}

\textsf{Point of trisection of line segment PQ}

\textbf{Solution:}

\textsf{Let P and Q be the points of trisection of line segment PQ}

\textsf{Then, P and Q divide the line segment AB internally}

\textsf{in the ratio 1:2 and 2:1 respectively}

\textsf{Since P divides AB internally in the ratio 1:2, we have}

P\left(\,\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)

P\left(\,\dfrac{1(-6)+2(3)}{1+2},\dfrac{1(5)+2(-1)}{1+2}\right)

P\left(\,\dfrac{6-6}{3},\dfrac{5-2}{3}\right)

P\left(0,\dfrac{3}{3}\right)

\implies\boxed{P\,(0,1)}

\text{Since Q divides AB internally in the ratio 2:1, we have}

Q\left(\,\dfrac{2(-6)+1(3)}{2+1},\dfrac{2(5)+1(-1)}{2+1}\right)

Q\left(\dfrac{-12+3}{3},\dfrac{10-1}{3}\right)

Q\left(\dfrac{-9}{3},\dfrac{9}{3}\right)

Q(-3,3)

\implies\boxed{Q(-3,3)}

Find more:

Find the point of trisection of the line segment AB, where A (-6, 11) and B (10, -3).

https://brainly.in/question/20696480

Similar questions