Math, asked by ashnvinigophane, 2 months ago

find the co-ordinates of Arout point p if p divided
the line segment joining the points A (-1,1)
and B(4,-3) in the ratto 2:3​

Answers

Answered by SachinGupta01
7

\bf \underline{ \underline{\maltese\:Given} }

\sf \implies Coordinates \: of \: point \: A = (-1, 1)

\sf \implies Coordinates \: of \: point \: B  = (4,  - 3)

\sf \implies Ratio \: in \: which \: P \: divides \: A \: and \: B \: is \: 2 : 3

\bf \underline{ \underline{\maltese\:To \:  find } }

\sf \implies Coordinates \: of \: point \:  P = \: ?

\bf \underline{ \underline{\maltese\:Solution  } }

\bf \underline{ Using\;section\;formula} :

\underline{{\boxed{\sf{P(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}}}}

\bf \underline{Where},

\sf \implies m_1 = 2

\sf \implies m_2= 3

\sf \implies x_1 =  - 1

\sf \implies x_2= 4

\sf \implies y_1 = 1

\sf \implies y_2=  - 3

\sf \underline{Substituting \: the \: values},

\sf{P(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}

\bf \underline{Now},

\sf{P(x,y) = \bigg( \dfrac{3 \times   (- 1) + 2 \times  4}{2 + 3}\;,\; \dfrac{3 \times  1 + 2 \times  ( - 3)}{2 + 3} \bigg)}

\sf{P(x,y) = \bigg( \dfrac{ - 3 + 8}{5}\;,\; \dfrac{3  + ( - 6)}{5} \bigg)}

\sf{P(x,y) = \bigg( \cancel{ \dfrac{ 5}{5}}\;,\; \dfrac{3  -  6}{5} \bigg)}

\sf{P(x,y) = \bigg( 1\;,\; \dfrac{ - 3}{5} \bigg)}

\underline{\boxed{\bf \red{Hence , the \: required\:coordinates \: of \: the \: point\:are \bigg( 1 \:,\:\dfrac{ - 3}{5}\bigg)}}}

Similar questions