Math, asked by atharvaphad6, 4 months ago

Find the co-ordinates of point P if P divides the line segment

joining the points A (–1, 7) and B (4, –3) in the ratio 2:3.​

Answers

Answered by krystina
34

Answer:

hope this will help you

Step-by-step explanation:

please mark me as branisliest

Attachments:

krystina: thanks for the help
Answered by SarcasticL0ve
35

Given:

  • Co - ordinates of point A = (-1 , 7)
  • Co - ordinates of point B = (4, - 3)
  • Ratio in which P divides A and B is 2:3.

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Co - ordinates of point P ?

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

☯ Let coordinates of point P be (x,y).

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Using\;section\;formula\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}}}}\\ \\

\dag\;{\underline{\frak{Putting\;values,}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf (x,y) = \bigg( \dfrac{3 \times (-1) + 2 \times 4}{2 + 3}\;,\; \dfrac{3 \times (7) + 2 \times (-3)}{2 + 3} \bigg)\\ \\

:\implies\sf (x,y) = \bigg( \dfrac{8 - 3}{5}\;,\; \dfrac{-6 + 21}{5}\bigg)\\ \\

:\implies\sf (x,y) = \bigg( \dfrac{5}{5}\;,\; \dfrac{15}{5}\bigg)\\ \\

:\implies\sf \pink{(x,y) = (1 , 3)}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\; Coordinates\;of\;point\;P\;are\; {\textsf{\textbf{(1,3)}}}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\bf{\purple{\mid{\overline{\underline{\bigstar\:More\;to\;know:}}}}\mid}}\\\\

Formula that is used to find the distance between two points :

⠀⠀⠀⠀⠀⠀⠀

  • Distance Formula = \sf \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

krystina: thanks for the help
Similar questions