Find the co-ordinates of the circumcentre of the triangle formed by the
points whose vertices are (1, 1, 0), (1, 2, 1) and (-2, 2, -1).
Answers
Answer:
Step-by-step explanation:
Let say co-ordinates of circum center are ( x , y , z)
circumcenter will be equidistant from each vertex
so (x -1)² + (y - 1)² + z² = (x -1)² + (y - 2)² + (z - 1)² = (x +2)² + (y -2)² + (z + 1)²
(x -1)² + (y - 1)² + z² = (x -1)² + (y - 2)² + (z - 1)²
=> (y - 1)² + z² = (y - 2)² + (z - 1)²
=> y² + 1 - 2y + z² = y² + 4 - 4y + z² + 1 - 2z
=> 2y + 2z = 4
=> y + z = 2
(x -1)² + (y - 2)² + (z - 1)² = (x +2)² + (y -2)² + (z + 1)²
=> (x -1)²+ (z - 1)² = (x +2)² + (z + 1)²
=> x² + 1 - 2x + z² + 1 - 2z = x² + 4 + 4x + z² + 1 + 2z
=> 6x + 4z = - 3
=> 6x = -3 - 4z
(x -1)² + (y - 1)² + z² = (x +2)² + (y -2)² + (z + 1)²
=> x² + 1 - 2x + y² + 1 - 2y + z² = x² + 4 + 4x + y² + 4 - 4y + z² + 1 + 2z
=> 6x -2y + 2z = -7
putting y = (2-z)
=>6x - 2(2 -z) + 2z = -7
=>6x - 4 + 2z + 2z = -7
=> 6x = -3 -4z ( same as eealier equation)
so
y + z = 2 & 6x = -3 - 4z
will give coordinates of circumcentre of the triangle
Answer:
Let's the co-ordinates of circumcentre be ( x , y , z).
circumcentre will be always at the equal distance from each vertex.
So,
(x -1)² + (y - 1)² + z² = (x -1)² + (y - 2)² + (z - 1)² = (x +2)² + (y -2)² + (z + 1)²(x -1)² + (y - 1)² + z² = (x -1)² + (y - 2)² + (z - 1)²
- (y - 1)² + z² = (y - 2)² + (z - 1)²
- y² + 1 - 2y + z² = y² + 4 - 4y + z² + 1 - 2z
- 2y + 2z = 4
- y + z = 2
(x -1)² + (y - 2)² + (z - 1)² = (x +2)² + (y -2)² + (z + 1)²
- (x -1)²+ (z - 1)² = (x +2)² + (z + 1)²
- x² + 1 - 2x + z² + 1 - 2z = x² + 4 + 4x + z² + 1 + 2z
- 6x + 4z = - 3
- 6x = -3 - 4z
(x -1)² + (y - 1)² + z² = (x +2)² + (y -2)² + (z + 1)²
- x² + 1 - 2x + y² + 1 - 2y + z² = x² + 4 + 4x + y² + 4 - 4y + z² + 1 + 2z
- 6x -2y + 2z = -7
Putting y = (2-z)
- 6x - 2(2 -z) + 2z = -7
- 6x - 4 + 2z + 2z = -7
- 6x = -3 -4z
So,
y + z = 2
6x = -3 - 4z