Find the co-ordinates of the in-centre of the triangle whose vertices are (-36,7),(20,7)and (0,-8).
Please answer with explanation
Answers
Answered by
69
Given, vertices of the triangle are A (-36,7), B (20,7) and C (0,-8)
a = BC = root (0-20)^2 + (-8-7)^2
= root(-20)^2 + (-15)^2
= root 400 + 625
= root 525
= 25.
b = CA = root (36-0)^2 + (7-(-8))^2
= root 1296 + 225
= root 1521
= 39.
c = AB = root 20-(-36)^2 + (7-7)^2
= root (20 + 36)^2 + 0
= root 56^2
= 56.
a = 25, b=39,c=56.
We now that incentre of the triangle is
a = BC = root (0-20)^2 + (-8-7)^2
= root(-20)^2 + (-15)^2
= root 400 + 625
= root 525
= 25.
b = CA = root (36-0)^2 + (7-(-8))^2
= root 1296 + 225
= root 1521
= 39.
c = AB = root 20-(-36)^2 + (7-7)^2
= root (20 + 36)^2 + 0
= root 56^2
= 56.
a = 25, b=39,c=56.
We now that incentre of the triangle is
(ax1 + bx2 + cx3)/(a+b+c),(ay1 + by2 + cy3)/(a+b+c) ------------ (2)
Subsitute values in (2), we get
(25(-36)+39(20)+56(0)/(25+39+56),25(7)+39(7)+56(-8)/(25+39+56))
= ((-120)/120,(448-448)/120)
= (-1,0).
Therefore the incentre is (-1,0).
Answered by
2
Step-by-step explanation:
A] Given A(7, -36) B(7,20) C(-8,0)
a = BC =
(−8−7)
2
+(0−20)
2
=
400+625
=25
b = CA =
(−8−7)
2
+(0+36)
2
=39
c = AB =
(7−7)
2
+((20+36)
2
)
=56
a = 25, b = 39, c = 56
In center =(
x+b
ax
1
+bx
2
+cx
3
),(
a+b+c
ay
1
+by
2
+cy
3
)
=(
25+39+56
25×7+36×7+56×8
),(
25+39+56
25×−36+39×20+56×0
)
=(
120
0
,
120
−120
)=(0,−1)
∴ In center is (0,-1)
Similar questions