Math, asked by CopyThat, 3 months ago

Find the co - ordinates of the point P which divides the line segment joining A (8 , 9) and B (-7 , 4) internally in the ratio 2 : 3.

Answers

Answered by kailashmannem
41

 \Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • A (8,9) and B (- 7,4) are divided internally in the ratio 2:3.

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • Co - ordinates of point P (x, y).

 \Large{\bf{\purple{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  • A (8,9) and B (- 7,4) are divided internally in the ratio 2:3.

  • Co - ordinates of point P (x, y) =

  • We know that,

 \boxed{\pink{\sf Section \: Formula \: = \: \dfrac{m_{1}x_{2} \: + \: m_{2}x_{1}}{m_{1} \: + \: m_{2}} \: , \: \dfrac{m_{1}y_{2} \: + \: m_{2}y_{1}}{m_{1} \: + \: m_{2}}}}

  • From, A (8,9) and B (- 7,4)

  • Here,

  •  \sf x_{1} \: = \: 8

  •  \sf x_{2} \: = \: - \: 7

  •  \sf y_{1} \: = \: 9

  •  \sf y_{2} \: = \: 4

  •  \sf m_{1} : m_{2} \: = \: 2 : 3

  • Substituting the values,

 \sf P(x,y) \: = \: \dfrac{2 \: * \: - \: 7 \: + \: 3 \: * \: 8}{2 \: + \: 3} \: , \: \dfrac{2 \: * \: 4 \: + \: 3 \: * \: 9}{2 \: + \: 3}

 \sf P(x,y) \: = \: \dfrac{ - \: 14 \: + \: 24}{5} \: , \: \dfrac{8 \: + \: 27}{5}

 \sf P(x,y) \: = \: \dfrac{10}{5} \: , \: \dfrac{35}{5}

 \sf P(x,y) \: = \: \dfrac{\cancel{10}}{\cancel{5}} \: , \: \dfrac{\cancel{35}}{\cancel{5}}

 \sf P(x,y) \: = \: \dfrac{2}{1} \: , \: \dfrac{7}{1}

 \sf P(x,y) \: = \: 2 \: , \: 7

Therefore,

  •  \underline{\boxed{\blue{\textsf{Co - ordintes of P (x, y) = P (2, 7).}}}}

 \Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}}

 \sf Section \: Formula \: = \: \dfrac{m_{1}x_{2} \: + \: m_{2}x_{1}}{m_{1} \: + \: m_{2}} \: , \: \dfrac{m_{1}y_{2} \: + \: m_{2}y_{1}}{m_{1} \: + \: m_{2}}

Answered by Anonymous
26

Answer:

Given :-

A(8,9)

B(-7,4)

Ratio = 2:3

To Find :-

Co-ordinate of point P

Solution :-

By using the section formula

 \dag{\boxed{\red{\mathfrak{\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2},\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}}}}}

We have

 \begin{cases}  \sf x_1 = 8  \\  \sf \: x_2 =  - 7 \\  \sf \: y_1 = 9 \\  \sf \: y_2 = 4 \\  \sf m_1 = 2 \\  \sf \: m_2 = 3\end{cases}

By putting the value

 \sf  \pink{\dfrac{2 \times  - 7 + 3 \times 8}{2 + 3}, \dfrac{2 \times 4 + 3 \times 9}{2 + 3}}

 \sf \blue{  \dfrac{ - 14 + 24}{2 + 3} , \dfrac{8 + 27}{2 + 3}}

 \sf \red { \dfrac{10}{2 + 3} , \dfrac{35}{2 + 3}}

 \sf \pink{  \dfrac{10}{5} , \dfrac{35}{5} }

 \sf \red{ (2,7)}

Similar questions