Math, asked by Avaneeshkarthik, 10 months ago

Find the co-ordinates of the point which divides the line segment joining (-1, 3) and (4, -7) internally in the ratio 3:4​

Answers

Answered by Anonymous
4

\huge\underline\mathbb{\red S\pink{O}\purple{L} \blue{UT} \orange{I}\green{ON :}}

Question :

Find the co-ordinates of the point which divides the line segment joining (-1, 3) and (4, -7) internally in the ratio 3:4.

Let,

  • x1 = - 1 ; y1 = 3
  • x2 = 4 ; y2 = - 7
  • m1 = 3 ; m2 = 4

By using " Section Formula " we can find the co - ordinates of line segment.

\tt\purple{★ Section\:Formula\:= (\frac{ m_{1}x _{2} +  m_{2}x _{1}   }{ m_{1} +  m_{2}  },  \frac{m _{1}y _{2} + m _{2}y _{1}   }{m_{1} + m _{2}  } ) }

  • Substitute the values.

\tt\:⟹( \frac{3(4) + 4( - 1)}{3 + 4}, \frac{3( - 7) + 4(3)}{3 + 4} )

\tt\:⟹( \frac{12  -  4}{7}  ,\frac{ - 21 + 12}{7} )

\tt\:⟹ (\frac{8}{7} \:  ,\frac{ - 9}{7} )

\underline{\boxed{\bf{\blue{∴ Hence,\:the\:co-ordinate\:is \: ( \frac{8}{7}  \: , \frac{ - 9}{7} )}}}} </p><p>

Similar questions