Math, asked by umeshkumesh423, 2 months ago

find the co_ ordinates of the point, which divides the line joining A(0, 0) and B(5, 10 ) in the ratio of 2:3​

Answers

Answered by Anonymous
28

Answer:

 { \huge{ \pmb{ \sf{Required  \: Answer...}}}}

From question,

m:n = 2:3

Given points,

A(0, 0) and B(5 , 10)

From points :

  • { \sf{ x_{1}  = 0}}
  •  \: { \sf{ x_{2}  = 5}}
  •  \: { \sf{ y_{1} = 0 }}
  •  \: { \sf{ y_{2} = 10 }}

Let's find the coordinate points:

By using formula,

{ \sf \bigg({ \frac{m x_{2}  + n x_{1}}{m + n} , \frac{my_{2} + n y_{1} }{m + n} \bigg)  }} \\

By Substituting Values,

{ \implies{ \sf{ \bigg( \frac{2(5) + 3(0)}{2 + 3},  \frac{2(10) + 3(0)}{2 + 3} \bigg) }}} \\

{ \implies{ \sf{ \bigg( \frac{10 + 0}{5}, \frac{20 + 0}{5}  \bigg) }}} \\

{ \implies{ \sf{ \bigg( \frac{10}{5}, \frac{20}{5}  \bigg) }}} \\

{ \implies{ \sf{ \big(2,4 \big) =  \big(x,y \big)}}}

Therefore,

  • p(x, y) = (2, 4)

Similar questions