Math, asked by Mister360, 2 months ago

Find the co-ordinates of the points which divides the line formed by A (1,5) and B (7,2) into 3 similar parts .

\underline{\Large {\bf Some\:arrow\:commands:-}

\boxed{\begin{array}{c|c}\boxed {bf {command}} & \ boxed  {\bf {output}} \\ \sf longmapsto &\longmapsto \\ \sf rightarrowtail &\rightarrowtail \\ \sf leadsto &\leadsto \\ \sf hookrightarrow &\hookrightarrow \\ \sf Rrightarrow &\Rrightarrow  \end {array}}

Note:-

use each command with "\"​

Answers

Answered by ItsRuchikahere
1

suppose those points are P(x,y) & Q(a,b)

now

Therefore point P divides AB internally in ratio 1 ∶ 2

 \longmapsto\: x =  \frac{1(7) + 2(1)}{1 + 2}  \\ \longmapsto \: x =  \frac{9}{3}  = 3 \\ \rightarrowtail \: y =  \frac{1(2) + 2(5)}{2 + 1} \rightarrowtail \: y = 12 \div 2 = 6 \\   P(x,y) = P(3,6)

Point Q divides AB internally in ratio 2 ∶ 1

\Rrightarrow \: a =  \frac{2(7) + 1(1)}{3}  \\ \Rrightarrow \: a = 5 \\ \Rrightarrow \: b =  \frac{2(2) + 1(5)}{3}  \\ \Rrightarrow \: b = 3

Q(a,b) = Q(5,3)

Answered by amankumaraman11
1

There exists two coordinates which divides the line formed by A (1,5) and B (7,2) into three similar parts.

Here,

 \boxed{\begin{array}{c|c}  \bf x_{1} & \red1  \\ \bf y_{1} & \red5 \\ \bf x_{2} & \red7 \\  \bf y_{2} & \red1\end {array}}

Let the first unknown coordinate be P(a,b)

 \rm P =  \tt \frac{2(7) + 1(1)}{2 + 1}, \frac{2(2) + 1(5)}{2 + 1}   \\  \\  \rm P =  \tt\frac{14 + 1}{3}, \frac{4+ 5}{3} \\  \\  \rm P =  \tt  \bigg(\frac{15}{3} ,  \frac{9}{3}\bigg)  \\  \\ \rm P =  \tt(5,3)

Let the second unknown coordinate be Q(c,d)

 \rm Q =  \tt \frac{1(7) + 2(1)}{2 + 1}, \frac{1(2) + 2(5)}{1 + 2} \\  \\  \rm Q =  \tt \frac{7 + 2}{3} ,  \frac{2 + 10}{3}  \\  \\\rm Q =  \tt  \frac{9}{3}  , \frac{12}{3}   \\ \\ \rm Q =  \tt(3  , 4)

Thus,

P(5,3) and Q(3,4) divides the line formed by A (1,5) and B (7,2) into three similar parts.

Similar questions