Math, asked by chrisfandypada, 30 days ago

Find the coefficient of b^6 in the expansion of ((a^2/2) + (2b^2))^10

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

\sf \implies \bigg(\dfrac{a^{2} }{2}  + 2b^{2} \bigg)^{10}

As we know that,

Apply binomial expansion in the question, we get.

\sf \implies ^{10}C_{r} \bigg(\dfrac{a^{2} }{2}  \bigg)^{10 - r} . \bigg(2b^{2} \bigg)^{r}

\sf \implies ^{10} C_{r} \bigg(\dfrac{a^{2(10 - r)} }{2^{10 - r} } \bigg) . \bigg(2b \bigg)^{2r}

Coefficient of b⁶ in the expansion, we get.

\sf \implies b^{2r} = b^{6}

\sf \implies 2r = 6.

\sf \implies r = 3.

\sf \implies T_{r + 1} = 3 + 1 = 4

Put the value of r = 3 in equation, we get.

\sf \implies ^{10}C_{3} \bigg( \dfrac{a^{2}^{(10 - 3)}  }{2^{(10 - 3)} }  \bigg). \bigg(2b \bigg)^{2 \times 3}

\sf \implies ^{10}C_{3} \bigg(\dfrac{a^{2(7)} }{2^{(7)} }  \bigg) . \bigg(2b \bigg)^{6}

\sf \implies ^{10} C_{3} \bigg(\dfrac{a^{14} }{2^{7} } \bigg)

                                                                                                                       

MORE INFORMATION.

Binomial Theorem with "n" is any index.

\sf  (1 + x)^{n} = 1 + nx + \dfrac{n(n - 1)}{2!} x^{2}  + \dfrac{n(n - 1)(n - 2)}{3!} x^{3} + . . . . + \dfrac{n(n - 1). . . (n - r + 1)}{r!} x^{r} + . . . \infty

\sf \implies General \ term \ = T_{r + 1} = \dfrac{n(n - 1)(n - 2) . . . . (n - r + 1)}{r!} . x^{r}

Answered by binodbam2003
1

Answer:

The coefficient of x2 in the expansion of (3x−2)7 is −6048

Similar questions