Math, asked by sukhpreetkaurgiana40, 9 hours ago

find the coefficient of the term involving x¹⁰ in the expansion of (x²-2)¹¹




please help me
class 11th chepter no 9 binomial theorem​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expansion is

\rm :\longmapsto\: {( {x}^{2} - 2) }^{11}

We know that

 \red{ \sf{ \: The \: general \: term \: in \: the \: expansion \: of \:  {(x + y)}^{n} \: is}}

 \red{\rm :\longmapsto\:\boxed{\sf{ T_{r + 1}  \: =  \:  ^{n} C_{r}  \: {x}^{n - r}   \: {y}^{r}}}}

So, General term of the given expansion is

\rm :\longmapsto\:\sf{ T_{r + 1}  \: =  \:  ^{11} C_{r}  \: { ({x}^{2} )}^{11 - r}   \: {( - 2)}^{r}}

\rm :\longmapsto\:\sf{ T_{r + 1}  \: =  \:  ^{11} C_{r}  \: { ({x} )}^{22 - 2r}   \: {( - 2)}^{r}}

Now, we have to find the coefficient of x¹⁰,

So, Substitute

\rm :\longmapsto\:22 - 2r = 10

\rm :\longmapsto\: - 2r = 10 - 22

\rm :\longmapsto\: - 2r = - 12

\bf\implies \:r = 6

Thus,

\rm :\longmapsto\:\sf{ T_{r + 1}  \: =  \:  ^{11} C_{r}  \: { ({x} )}^{22 - 2r}   \: {( - 2)}^{r}}

can be rewritten as on substituting r = 6

\rm :\longmapsto\:\sf{ T_{6+ 1}  \: =  \:  ^{11} C_{6}  \: { ({x} )}^{10}   \: {( - 2)}^{6}}

\rm :\longmapsto\:\sf{ T_{7}  \: =  \:  ^{11} C_{6}  \: { ({x} )}^{10}   \:  {2}^{6} }

Hence,

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  ^{11} C_{6} \times  {2}^{6}

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  \dfrac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1}  \times  64

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  462 \times  64

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  29568

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ ^{n} C_{r} =  \: ^{n} C_{n - r}}}

\boxed{\tt{ ^{n} C_{0} =  \: ^{n} C_{n} = 1}}

\boxed{\tt{ ^{n} C_{1} =  \: ^{n} C_{n - 1} = n}}

\boxed{\tt{ ^{n} C_{x} =  \: ^{n} C_{y}\rm\implies \:n = x + y \:  \: or \:  \: x = y}}

\boxed{\tt{  \: ^{n} C_{r} \:  +  \: ^{n} C_{r - 1} \:  =  \: ^{n + 1} C_{r}}}

\boxed{\tt{  \:  \frac{^{n} C_{r}}{^{n} C_{r - 1}}  =  \frac{n - r + 1}{r} \: }}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given expansion is

\rm :\longmapsto\: {( {x}^{2} - 2) }^{11}

We know that

 \red{ \sf{ \: The \: general \: term \: in \: the \: expansion \: of \:  {(x + y)}^{n} \: is}}

 \red{\rm :\longmapsto\:\boxed{\sf{ T_{r + 1}  \: =  \:  ^{n} C_{r}  \: {x}^{n - r}   \: {y}^{r}}}}

So, General term of the given expansion is

\rm :\longmapsto\:\sf{ T_{r + 1}  \: =  \:  ^{11} C_{r}  \: { ({x}^{2} )}^{11 - r}   \: {( - 2)}^{r}}

\rm :\longmapsto\:\sf{ T_{r + 1}  \: =  \:  ^{11} C_{r}  \: { ({x} )}^{22 - 2r}   \: {( - 2)}^{r}}

Now, we have to find the coefficient of x¹⁰,

So, Substitute

\rm :\longmapsto\:22 - 2r = 10

\rm :\longmapsto\: - 2r = 10 - 22

\rm :\longmapsto\: - 2r = - 12

\bf\implies \:r = 6

Thus,

\rm :\longmapsto\:\sf{ T_{r + 1}  \: =  \:  ^{11} C_{r}  \: { ({x} )}^{22 - 2r}   \: {( - 2)}^{r}}

can be rewritten as on substituting r = 6

\rm :\longmapsto\:\sf{ T_{6+ 1}  \: =  \:  ^{11} C_{6}  \: { ({x} )}^{10}   \: {( - 2)}^{6}}

\rm :\longmapsto\:\sf{ T_{7}  \: =  \:  ^{11} C_{6}  \: { ({x} )}^{10}   \:  {2}^{6} }

Hence,

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  ^{11} C_{6} \times  {2}^{6}

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  \dfrac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1}  \times  64

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  462 \times  64

\rm :\longmapsto\:Coefficient \: of \:  {x}^{10} = \:  29568

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ ^{n} C_{r} =  \: ^{n} C_{n - r}}}

\boxed{\tt{ ^{n} C_{0} =  \: ^{n} C_{n} = 1}}

\boxed{\tt{ ^{n} C_{1} =  \: ^{n} C_{n - 1} = n}}

\boxed{\tt{ ^{n} C_{x} =  \: ^{n} C_{y}\rm\implies \:n = x + y \:  \: or \:  \: x = y}}

\boxed{\tt{  \: ^{n} C_{r} \:  +  \: ^{n} C_{r - 1} \:  =  \: ^{n + 1} C_{r}}}

\boxed{\tt{  \:  \frac{^{n} C_{r}}{^{n} C_{r - 1}}  =  \frac{n - r + 1}{r} \: }}

Similar questions