Math, asked by mammunvc1200, 1 month ago

Find the coefficient of x^12 in the exapansion of (x^2+1/x^2) ^10

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expansion is

\rm :\longmapsto\: {\bigg[ {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg]}^{10}

We know,

General Term in the expansion of

\boxed{ \tt{ \:  {(x + y)}^{n} \: is  \: T_{r + 1} =  \:  ^{n}C_{r} {x}^{n - r} {y}^{r} \: }}

So, General Term in the expansion of

\rm :\longmapsto\: {\bigg[ {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg]}^{10}

is

\rm :\longmapsto\:T_{r + 1} = \:   ^{10}C_{r} {\bigg[ {x}^{2} \bigg]}^{10 - r} {\bigg[\dfrac{1}{ {x}^{2} } \bigg]}^{r}

\rm :\longmapsto\:T_{r + 1} = \:   ^{10}C_{r} {\bigg[ {x}^{} \bigg]}^{20 - 2r} {\bigg[\dfrac{1}{ {x}^{2r} } \bigg]}^{}

\rm :\longmapsto\:T_{r + 1} = \:   ^{10}C_{r} {\bigg[ {x}^{} \bigg]}^{20 - 2r - 2r}

\rm :\longmapsto\:T_{r + 1} = \:   ^{10}C_{r} {\bigg[ {x}^{} \bigg]}^{20 - 4r}

Since, we have to find coefficient of x^12, so substitute

 \red{\rm :\longmapsto\:20 - 4r = 12}

 \red{\rm :\longmapsto\: - 4r = 12 - 20}

 \red{\rm :\longmapsto\: - 4r = -8 }

 \red{\bf\implies \:\: r =2 }

Hence,

\rm :\longmapsto\:T_{2 + 1} = \:   ^{10}C_{2} {\bigg[ {x}^{} \bigg]}^{20 - 4 \times 2}

\rm :\longmapsto\:T_{3} = \: \dfrac{10 \times 9}{2 \times 1}  {\bigg[ {x}^{} \bigg]}^{20 - 8}

\rm :\longmapsto\:T_{3} = \: 45{\bigg[ {x}^{} \bigg]}^{12}

 \purple{\bf\implies \:\boxed{ \tt{ \: coefficient \: of \:  {x}^{12} = 45 \:  \: }}}

More to know

\boxed{ \tt{ \:  ^{n}C_{x} =  \:  ^{n}C_{y}\bf\implies \:x = y \:  \: or \:  \: n = x + y \: }}

\boxed{ \tt{ \:  ^{n}C_{r} =  \frac{n - 1}{r} \:  ^{n - 1}C_{r - 1} \:  \: }}

\boxed{ \tt{ \:  ^{n}C_{r} \:  +  \:  ^{n}C_{r - 1} \:  =  \:  ^{n + 1}C_{r} \: }}

\boxed{ \tt{ \:  \frac{ ^{n}C_{r}}{ ^{n}C_{r - 1}} =  \frac{n - r + 1}{r} \:  \: }}

Similar questions