Math, asked by vinothpandian1782, 10 months ago

find the cofficient of varience of the data 12, 15, 25 ,20, 18.

Answers

Answered by Alcaa
0

Answer:

Coefficient of Variation = 27.5%

Step-by-step explanation:

We are given the following data;

        X                    X - X bar            (X-Xbar)^{2}

       12                   12 - 18 = -6                36

       15                   15 - 18 = -3                 9

       25                  25 - 18 = 7                49

       20                  20 - 18 = 2                 4

       18                   18 - 18  = 0                  0          

                                                          Total = 98    

Mean of data, X bar = \frac{\sum X}{n} = \frac{90}{5} = 18

Standard deviation, S.D. = \sqrt{\frac{\sum (X_Xbar)^{2} }{n-1} } = \sqrt{\frac{98}{5-1} } = 4.95

Coefficient of Variation formula = \frac{S.D.}{Mean}*100

                                                    =  \frac{4.95}{18}*100 = 27.5%

Therefore, coefficient of variation of the data is 27.5%

Similar questions