Math, asked by vikramshekhawat9039, 5 months ago

find the cofficient of x^7 in the expansion of( x^2 +1\x)^11.​

Answers

Answered by shadow68
1

Answer:

Coefficientofx

7

=462

Given \: (x^{2} + \frac{1}{x})^{11}Given(x

2

+

x

1

)

11

\begin{gathered}General \: term \:of \: binomial \: expansion \\(a+b)^{n} \: is\: t_{n}\end{gathered}

Generaltermofbinomialexpansion

(a+b)

n

ist

n

\boxed {\pink { t_{n} = ^nC_{r} \cdot a^{n-r}\cdot b^{r} }}

t

n

=

n

C

r

⋅a

n−r

⋅b

r

Here , a = x^{2} , b = \frac{1}{x} \:and \:n = 11Here,a=x

2

,b=

x

1

andn=11

t_{n} = ^{11} C_{r} \times (x^{2})^{11-r} \times (\frac{1}{x})^{r}t

n

=

11

C

r

×(x

2

)

11−r

×(

x

1

)

r

\begin{gathered}= ^{11}C_{r} \times x^{22-2r} \times x^{r}\\= ^{11}C_{r} \times x^{22-2r-r}\\= ^{11}C_{r}\times x^{22-3r} \:--(1)\end{gathered}

=

11

C

r

×x

22−2r

×x

r

=

11

C

r

×x

22−2r−r

=

11

C

r

×x

22−3r

−−(1)

/* According to the problem given,

22-3r = 7 \: (Given)22−3r=7(Given)

\implies -3r = 7 - 22⟹−3r=7−22

\implies r = \frac{-15}{-3} = 5⟹r=

−3

−15

=5

\begin{gathered}Coefficient \: of \: x^{7} = ^{11}C_{r} \\= ^{11}C_{5}\end{gathered}

Coefficientofx

7

=

11

C

r

=

11

C

5

\begin{gathered}= \frac{11!}{(11-5)! 5!}\\= \frac{11!}{6! 5! }\\= \frac{11\cdot10\cdot9\cdot8\cdot7\cdot6!}{6! \times 5\cdot4\cdot3\cdot2\cdot1 }\\= 462\end{gathered}

=

(11−5)!5!

11!

=

6!5!

11!

=

6!×5⋅4⋅3⋅2⋅1

11⋅10⋅9⋅8⋅7⋅6!

=462

Therefore.,

\red { Coefficient \:x^{7} }\green {= 462 }Coefficientx

7

=462

Similar questions