Math, asked by arunimakundu12345, 6 months ago

find the common difference of an AP whose first term is ½ and 8th term is 17/6. find the ratio of 4th term and 50th term.​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{First term of an A.P is}\;\mathsf{\dfrac{1}{2}\;and\;8\,th\;term\;is\;\dfrac{17}{6}}

\underline{\textbf{To find:}}

\textsf{Ratio of 4th term and 50th term}

\underline{\textbf{Solution:}}

\textsf{Let the given A.P be a, a+d, a+2d .  .  .  .  .  .}

\mathsf{Here,\;\;a=\dfrac{1}{2}\;\;and\;\;t_8=\dfrac{17}{6}}

\mathsf{t_8=\dfrac{17}{6}}

\implies\mathsf{a+7\,d=\dfrac{17}{6}}

\mathsf{\dfrac{1}{2}+7\,d=\dfrac{17}{6}}

\mathsf{7\,d=\dfrac{17}{6}-\dfrac{1}{2}}

\mathsf{7\,d=\dfrac{17-3}{6}}

\mathsf{7\,d=\dfrac{14}{6}}

\mathsf{d=\dfrac{2}{6}}

\implies\boxed{\mathsf{d=\dfrac{1}{3}}}

\mathsf{Now,\;Using}

\boxed{\mathsf{n\,th\;term\;of\;A.P\;is\;t_n=a+(n-1)d}}

\mathsf{\dfrac{t_4}{t_{50}}}

\mathsf{=\dfrac{a+3d}{a+49d}}

\mathsf{=\dfrac{\dfrac{1}{2}+3\left(\dfrac{1}{3}\right)}{\dfrac{1}{2}+49\left(\dfrac{1}{3}\right)}}

\mathsf{=\dfrac{\dfrac{1}{2}+\dfrac{3}{3}}{\dfrac{1}{2}+\dfrac{49}{3}}}

\mathsf{=\dfrac{\dfrac{3+6}{6}}{\dfrac{3+98}{6}}}

\mathsf{=\dfrac{\dfrac{9}{6}}{\dfrac{101}{6}}}

\mathsf{=\dfrac{9}{101}}

\implies\boxed{\mathsf{t_4\,:\,t_{50}=9:101}}

Answered by rudrarb2403
1

this is a answer....... .......

Attachments:
Similar questions