Math, asked by ajaysingh199690, 1 day ago

Find the common difference of the Arithmetic Progression (A.P) 1/a , 3-a / 3a ,3-2a/ 3a , ( a not equal to 0)

Answers

Answered by amtkmr0
3

Answer:

d =  -1/3

Step-by-step explanation:

To Find : d = Common Difference

d = t₂ - t₁

putting the values,

= (3 - a)/3a - 1/a

\frac{3 - a- 3}{3a} =  \frac{-a}{3a} = \frac{-1}{3}

Brain"liest" please

Answered by perfect206
2

Answer:

d= (-1/3)

Step-by-step solution:

Given A.P is;\\\frac{1}{a} , \frac{3-a}{3a} , \frac{3-2a}{3a} \\We know, \\d= t3 - t2 = t2 -t1\\So,\\t2-t1=t3-t2\\or,\frac{3-a}{3a} -\frac{1}{a} = \frac{3-2a}{3a} -\frac{3-a}{3a} \\or, \frac{3-a-3}{3a} =\frac{3-2a-3+a}{3a} \\or, \frac{-a}{3a} =\frac{-a}{3a}\\\\or, \frac{-1}{3} =\frac{-1}{3} \\Since,\\t3-t2 = t2- t1= \frac{-1}{3} . So, common  -difference (d) is \frac{-1}{3}

Similar questions