Math, asked by SharmaShivam, 1 year ago

Find the complex number \mathcal{Z}, if |\mathcal{Z}+1|=\mathcal{Z}+2\left(1+i\right).​

Answers

Answered by skh2
97

|\mathcal{Z}+1|=\mathcal{Z}+2\left(1+i\right)

Let us assume |\mathcal{Z}= a+ib

So,

In the equation we have :-

|\mathcal{Z}+1|=\mathcal{Z}+2\left(1+i\right) \\  \\  \\|a + ib+1|=a + ib+2\left(1+i\right) \\  \\  \\|(a+1) + ib|=(a + 2) + (b + 2)i

We already know that :-

|\mathcal{Z}| =  \sqrt{ {a}^{2} +  {b}^{2} }

Thus we have the equation as :-

 \sqrt{ {(a + 1)}^{2} +  {b}^{2} } =(a + 2) + (b + 2)i

On comparing the real and imaginary part of LHS and RHS we get :-

b + 2 = 0 \\  \\  \\ b = ( - 2)

Also,

 \sqrt{ {(a + 1)}^{2} +  {b}^{2} } = a + 2 \\  \\  \\ \sqrt{ {a}^{2} + 2a + 1 +  {( - 2)}^{2} } = a + 2 \\  \\  \\ {a}^{2} + 2a + 1 + 4 =  {(a +2)}^{2} \\  \\  \\ {a}^{2} + 2a + 5 =  {a}^{2} + 4a + 4 \\  \\  \\4a - 2a = 5 - 4 = 1 \\  \\  \\2a = 1 \\  \\  \\a =  \frac{1}{2}

Hence,

We have the values of a = 1/2 and b=(-2)

Putting in the form a+ib to get the complex number z

So,

\mathcal{Z} = a + ib \\  \\  \\\mathcal{Z} =  \frac{1}{2} - 2i


raven68: nice answer
raven68: dekho Moderator tera sara barai ye inspector delete kar diya
MODNEWS: nice
MODNEWS: good
Answered by wwwseenalingampalli
1

Answer:

hope it is helpful to you.

Attachments:
Similar questions