Math, asked by Anonymous, 6 months ago

Find the compound interest at 4% p.a. for 3 years on the principal which gives the simple interest of 2400
at the same rate and for the same time.




DON'T SPAM


ANSWER IS ₹2497.28



I need Explanation​

Answers

Answered by sethrollins13
78

Given :

  • Rate of Interest (r) = 4%
  • Time Taken (t) = 3 yrs.
  • Simple Interest = 2400

To Find :

  • Compound Interest .

Solution :

Firstly we will find Principal :

Using Formula :

\longmapsto\tt\boxed{Simple\:Interest=\dfrac{P\times{R}\times{T}}{100}}

Putting Values :

\longmapsto\tt{2400=\dfrac{P\times{4}\times{3}}{100}}

\longmapsto\tt{2400=\dfrac{12\:P}{100}}

\longmapsto\tt{P=\dfrac{{\cancel{2400}}\times{100}}{{\cancel{12}}}}

\longmapsto\tt{P=200\times{100}}

\longmapsto\tt\bf{P=Rs.20000}

Now ,

\longmapsto\tt{Principal=Rs.20000}

Using Formula :

\longmapsto\tt\boxed{Amount=P\bigg(1+\dfrac{r}{100}\bigg)^{t}}

Putting Values :

\longmapsto\tt{20000\bigg(1+\dfrac{4}{100}\bigg)^{3}}

\longmapsto\tt{20000\bigg(\dfrac{100+4}{100}\bigg)^{3}}

\longmapsto\tt{20000\bigg(\dfrac{104}{100}\bigg)^{3}}

\longmapsto\tt{2{\not{0}}{\not{0}}{\not{0}}{\not{0}}\times\dfrac{1124864}{100{\not{0}}{\not{0}}{\not{0}}{\not{0}}}}

\longmapsto\tt{2\times\dfrac{1124864}{100}}

\longmapsto\tt{\dfrac{2249728}{100}}

\longmapsto\tt\bf{Rs.22497.28}

For Compound Interest :

\longmapsto\tt{Amount-Principal}

\longmapsto\tt{22497.28-20000}

\longmapsto\tt\bf{Rs.2497.28}

So , The Compound Interest is Rs.2497.28 ..


vikram991: Keep it up :)
Answered by Stoneheartgirl
5

Step-by-step explanation:

Given :

Rate of Interest (r) = 4%

Time Taken (t) = 3 yrs.

Simple Interest = 2400

To Find :

Compound Interest .

Solution :

Firstly we will find Principal :

Using Formula :

\longmapsto\tt\boxed{Simple\:Interest=\dfrac{P\times{R}\times{T}}{100}}⟼

SimpleInterest=

100

P×R×T

Putting Values :

\longmapsto\tt{2400=\dfrac{P\times{4}\times{3}}{100}}⟼2400=

100

P×4×3

\longmapsto\tt{2400=\dfrac{12\:P}{100}}⟼2400=

100

12P

\longmapsto\tt{P=\dfrac{{\cancel{2400}}\times{100}}{{\cancel{12}}}}⟼P=

12

2400

×100

\longmapsto\tt{P=200\times{100}}⟼P=200×100

\longmapsto\tt\bf{P=Rs.20000}⟼P=Rs.20000

Now ,

\longmapsto\tt{Principal=Rs.20000}⟼Principal=Rs.20000

Using Formula :

\longmapsto\tt\boxed{Amount=P\bigg(1+\dfrac{r}{100}\bigg)^{t}}⟼

Amount=P(1+

100

r

)

t

Putting Values :

\longmapsto\tt{20000\bigg(1+\dfrac{4}{100}\bigg)^{3}}⟼20000(1+

100

4

)

3

\longmapsto\tt{20000\bigg(\dfrac{100+4}{100}\bigg)^{3}}⟼20000(

100

100+4

)

3

\longmapsto\tt{20000\bigg(\dfrac{104}{100}\bigg)^{3}}⟼20000(

100

104

)

3

\longmapsto\tt{2{\not{0}}{\not{0}}{\not{0}}{\not{0}}\times\dfrac{1124864}{100{\not{0}}{\not{0}}{\not{0}}{\not{0}}}}⟼2

0

0

0

100

0

0

0

0

1124864

\longmapsto\tt{2\times\dfrac{1124864}{100}}⟼2×

100

1124864

\longmapsto\tt{\dfrac{2249728}{100}}⟼

100

2249728

\longmapsto\tt\bf{Rs.22497.28}⟼Rs.22497.28

For Compound Interest :

\longmapsto\tt{Amount-Principal}⟼Amount−Principal

\longmapsto\tt{22497.28-20000}⟼22497.28−20000

\longmapsto\tt\bf{Rs.2497.28}⟼Rs.2497.28

So , The Compound Interest is Rs.2497.28 ..

Similar questions
Math, 6 months ago