Find the compound interest at 4% p.a. for 3 years on the principal which gives the simple interest of 2400
at the same rate and for the same time.
DON'T SPAM
ANSWER IS ₹2497.28
I need Explanation
Answers
Given :
- Rate of Interest (r) = 4%
- Time Taken (t) = 3 yrs.
- Simple Interest = 2400
To Find :
- Compound Interest .
Solution :
Firstly we will find Principal :
Using Formula :
Putting Values :
Now ,
Using Formula :
Putting Values :
For Compound Interest :
So , The Compound Interest is Rs.2497.28 ..
Step-by-step explanation:
Given :
Rate of Interest (r) = 4%
Time Taken (t) = 3 yrs.
Simple Interest = 2400
To Find :
Compound Interest .
Solution :
Firstly we will find Principal :
Using Formula :
\longmapsto\tt\boxed{Simple\:Interest=\dfrac{P\times{R}\times{T}}{100}}⟼
SimpleInterest=
100
P×R×T
Putting Values :
\longmapsto\tt{2400=\dfrac{P\times{4}\times{3}}{100}}⟼2400=
100
P×4×3
\longmapsto\tt{2400=\dfrac{12\:P}{100}}⟼2400=
100
12P
\longmapsto\tt{P=\dfrac{{\cancel{2400}}\times{100}}{{\cancel{12}}}}⟼P=
12
2400
×100
\longmapsto\tt{P=200\times{100}}⟼P=200×100
\longmapsto\tt\bf{P=Rs.20000}⟼P=Rs.20000
Now ,
\longmapsto\tt{Principal=Rs.20000}⟼Principal=Rs.20000
Using Formula :
\longmapsto\tt\boxed{Amount=P\bigg(1+\dfrac{r}{100}\bigg)^{t}}⟼
Amount=P(1+
100
r
)
t
Putting Values :
\longmapsto\tt{20000\bigg(1+\dfrac{4}{100}\bigg)^{3}}⟼20000(1+
100
4
)
3
\longmapsto\tt{20000\bigg(\dfrac{100+4}{100}\bigg)^{3}}⟼20000(
100
100+4
)
3
\longmapsto\tt{20000\bigg(\dfrac{104}{100}\bigg)^{3}}⟼20000(
100
104
)
3
\longmapsto\tt{2{\not{0}}{\not{0}}{\not{0}}{\not{0}}\times\dfrac{1124864}{100{\not{0}}{\not{0}}{\not{0}}{\not{0}}}}⟼2
0
0
0
0×
100
0
0
0
0
1124864
\longmapsto\tt{2\times\dfrac{1124864}{100}}⟼2×
100
1124864
\longmapsto\tt{\dfrac{2249728}{100}}⟼
100
2249728
\longmapsto\tt\bf{Rs.22497.28}⟼Rs.22497.28
For Compound Interest :
\longmapsto\tt{Amount-Principal}⟼Amount−Principal
\longmapsto\tt{22497.28-20000}⟼22497.28−20000
\longmapsto\tt\bf{Rs.2497.28}⟼Rs.2497.28
So , The Compound Interest is Rs.2497.28 ..