Math, asked by BrainIyAbhigyan, 11 months ago

.

.

.

Find the compound interest at the rate of 5% per annum for 3 years on that sum which in 3 years at the rate of 5% per annum gives 1200 as simple interest.​

Answers

Answered by Anonymous
3

Answer:

➡️⏩➡️⏩➡️⏩➡️⏩➡️⏩➡️⏩➡️

given that

S.I = 1️⃣2️⃣0️⃣0️⃣

T = 3️⃣ years

so,

by using the formula

S.I = PRT/1️⃣0️⃣0️⃣

P = S.I × 1️⃣0️⃣0️⃣/RT

P = 1️⃣2️⃣0️⃣0️⃣×1️⃣0️⃣0️⃣

--------------------------------------

5️⃣× 3️⃣

P = 8️⃣0️⃣0️⃣0️⃣0️⃣

now,

C.I= P{(1️⃣➕R/1️⃣0️⃣0️⃣)^n ➖1️⃣}

C.I ={2️⃣1️⃣}^3 ➖8️⃣0️⃣0️⃣0️⃣

C.I = 9️⃣2️⃣6️⃣1️⃣➖8️⃣0️⃣0️⃣0️⃣

C.I= 1️⃣2️⃣6️⃣1️⃣. RS

hope it helps u

Answered by Anonymous
24

\huge{\bigstar{\underline{\red{\mathfrak{Question}}}}}

◈ ━━━━━━━ ◆ ━━━━━━━ ◈

ғɪɴᴅ ᴛʜᴇ ᴄᴏᴍᴘᴏᴜɴᴅ ɪɴᴛᴇʀᴇsᴛ ᴀᴛ ᴛʜᴇ ʀᴀᴛᴇ ᴏғ 5% ᴘᴇʀ ᴀɴɴᴜᴍ ғᴏʀ 3 ʏᴇᴀʀs ᴏɴ ᴛʜᴀᴛ sᴜᴍ ᴡʜɪᴄʜ ɪɴ 3 ʏᴇᴀʀs ᴀᴛ ᴛʜᴇ ʀᴀᴛᴇ ᴏғ 5% ᴘᴇʀ ᴀɴɴᴜᴍ ɢɪᴠᴇs 1200 ᴀs sɪᴍᴘʟᴇ ɪɴᴛᴇʀᴇsᴛ.

\huge{\bigstar{\underline{\red{\mathfrak{Answer}}}}}

\sf{S.I. = 1200}

Rate of Interest = 5% p.a.

\sf{Time = 3 years}

◈ ━━━━━━━ ◆ ━━━━━━━ ◈

\sf{P =  \frac{S.I. \times 100}{R \times T}}

\sf{ =  \frac{1200 \times 100}{5 \times 3} }

\sf{ = 400 \times 20}

\sf{ = 8000}

◈ ━━━━━━━ ◆ ━━━━━━━ ◈

\sf{=> C.I. = P [(1 +  \frac{R}{100}  {)}^{n}  - 1]}

\sf{= 8000[(1+  { \frac{5}{100} )}^{3} - 1]}

\sf{= 8000[(1+ { \frac{1}{20} })^{3} - 1]}

\sf{= 8000[  \frac{{21}^{3}  -  {20}^{3} }{8000} ]}

\sf{= 8000[ \frac{9261 - 8000}{8000} ]}

\sf{= 8000[\frac{1216}{8000}]}

\sf{= 8000 \times \frac{1216}{8000}}

\sf{= 1261}

◈ ━━━━━━━ ◆ ━━━━━━━ ◈

<Marquee>ᴛʰᵃⁿᵏˢ ʙʰᵃⁱ❤️ ғᵒʳ ᴘᵒⁱⁿᵗˢ.☻

Similar questions