Math, asked by pinushree, 3 months ago

Find the compound interest, correct to the
nearest rupee, on 2,400 for 2whole 1/2 years at 5 %per annum​

Answers

Answered by anzalnanihas
3

Step-by-step explanation:

amount for 2 year = P(1+R/100)^n

2400×(1+5/100)^2

=2400×(105/100)×(105/100)

=2646rupees

interest on 1/2 year = (2646×5)/200

= 66.15

total interest = 246 + 66.15

= 312.15rupees

Answered by ajay8949
2

  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{principal = 2400}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{time = 2 \frac{1}{2} years}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{rate = 5\% \: pa}

  \: \sf{we \: know}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed {\blue{ \sf{a = p(1 +  \frac{r}{100} ) {}^{t} }}}

 =  >  \:  \:  \:  \sf{ a = 2400(1 +  \frac{5}{100}) {}^{2 }  }

=  >    \:  \:  \:  \:  \:  \:  \:  \: \:  \: \sf{a = 2400( \frac{105}{100} ) {}^{2} }

 =  > \:  \sf{  a =  \cancel{2400} \times  \frac{ \cancel{105}}{ \cancel{100} } \times  \frac{ \cancel{105}} { \cancel{100}} }

 =  >   \:  \:  \:  \:  \:  \: \sf{a = 6 \times 21 \times 21}

  =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ a = 441 \times 6}

=  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{a =264 6}

 =  >  \:  \sf{interest =2646 -  2400 }

 =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ 246 \: rs}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{s.i. =  \frac{p \times r \times t}{100} } \\

 =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {\frac{2646 \times 5 \times  \frac{1}{2} }{100}  }\\

 =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 66.15

 \sf{total \: compound \: interest \:  =  246+ 66.15}

 =  >    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \green { \boxed{\sf \pink{ 312.15 \: rs}}}

Similar questions