Math, asked by fabdul6341, 1 year ago

Find the compound interest of
Principal= 10500
Rate% p.a= 8
Number of years=2

Answers

Answered by sciencemathsharsh
9
Compound interest amount=P×{(100+r)/100}^n
=10500×{(108)/100}²
=12247.2
Interest=amount -principle
=12247.2-10500
=1747.2
please mark it as brainliest
Answered by silentlover45
11

\large\underline\pink{Given:-}

  • Principal, p = 10500
  • Rate, r = 8 %
  • Time, t = 2 year

\large\underline\pink{To find:-}

  • Fine the compound interest and amount ....?

\large\underline\pink{Solutions:-}

 \: \: \: \: \: \leadsto \: \: A \: \: = \: \: p \: {({1} \: + \: \frac{r}{100})}^{n}

\: \: \: \: \: \: \: \leadsto \: \:  {10500} \: {({1} \: + \: \frac{8}{100})}^{2}

\: \: \: \: \: \: \: \leadsto \: \: {10500} \: {(\frac{{100} \: + \: {8}}{100})}^{2}

\: \: \: \: \: \: \: \leadsto \: \: {10500} \: {(\frac{108}{100})}^{2}

\: \: \: \: \: \: \: \leadsto \: \: {10500} \: \: = \: \: {(\frac{27}{25})}^{2}

\: \: \: \: \: \: \: \leadsto \: \: \cancel{10500} \: \times \: \frac{27}{\cancel{25}} \: \times \: \frac{27}{25}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{420} \: \times \: {27} \: \times \: {27}}{25}

\: \: \: \: \: \: \: \leadsto \: \: \frac{306180}{25}

\: \: \: \: \: \: \: \leadsto \: \: {12247.2}

Amount => Rs. 12247.2

  • C.I = Amount - Principal

⟹ C.I = 12247.2 - 10500

⟹ C.I = 1747.2

Hence, the Compound interest is 10500 and Amount is 1747.2.

Similar questions