Math, asked by NISHMINTH, 4 days ago

Find the compound interest on 12,000 at rate of interest of 12% for one year, if the interest is being compounded half-yearly,​

Answers

Answered by Anonymous
34

Given :

  • Principal = Rs.12000
  • Rate = 12 %
  • Time = 1 year
  • Compounded = Half - yearly

 \\ \rule{200pt}{3pt}

To Find :

  • Compound Interest = ?

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

  • Amount :

 \large{\color{cyan}{\bigstar}} \; \; {\underline{\boxed{\red{\sf{ A = P\bigg\lgroup 1 + \dfrac{R}{200} \bigg\rgroup^{2n} }}}}}

  • Compound Interest :

 \large{\color{cyan}{\bigstar}} \; \; {\underline{\boxed{\red{\sf{ Compound \; Interest = Amount - Principal }}}}}

Where :

  •  \twoheadrightarrow A = Amount
  •  \twoheadrightarrow R = Rate
  •  \twoheadrightarrow P = Principal
  •  \twoheadrightarrow n = Time

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Amount :

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = P\bigg\lgroup 1 + \dfrac{R}{200} \bigg\rgroup^{2n} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000\bigg\lgroup 1 + \dfrac{12}{200} \bigg\rgroup^{2 \times 1} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000\bigg\lgroup 1 + \dfrac{12}{200} \bigg\rgroup^{2} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000\bigg\lgroup 1 + \cancel\dfrac{12}{200} \bigg\rgroup^{2} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000\bigg\lgroup 1 + \cancel\dfrac{6}{100} \bigg\rgroup^{2} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000\bigg\lgroup 1 + 0.06 \bigg\rgroup^{2} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000\bigg\lgroup 1.06 \bigg\rgroup^{2} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \times 1.06 \times 1.06 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \times 1.1236 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; {\qquad{\orange{\sf { Amount = ₹ \; 13483.2  }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Compound Interest :

 \begin{gathered} \; \implies \; \; \sf { Compound \; Interest = Amount - Principal } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; \sf { Compound \; Interest = 13483.2 - 12000 } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; {\qquad{\purple{\sf { Compound \; Interest = ₹ \; 1483.2  }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❛❛ Compound Interest on this sum of money is ₹ 1483.2 . ❜❜

 \\ {\red{\underline{\rule{300pt}{9pt}}}}

Similar questions