Math, asked by smdhar90, 1 year ago

Find the compound interest on ₹15625 at 16% per annum for nine months when coumpended quarterly

Answers

Answered by Anonymous
2
HEY DEAR ... ✌️✌️

_______________________


Refer To Attachment .

_______________________

HOPE , IT HELPS ... ✌️✌️✌️
Attachments:

smdhar90: It's wrong correct answer is 1951
Answered by Mercidez
8
\large\red{\boxed{Solution :\longrightarrow}}

\large\red{\boxed{Given,}}

P = Rs \: \: 15625

R = 16\% \: \: p.a.

T = 9 \: \: months \\ \\ \: \: \: \:= \frac{9}{12} \: \: years \\ \\ \: \: \:\: = \frac{3}{4} \: \: years

\blue{\boxed{Now}}

\green{\boxed{A = P \times (1 + \frac{R}{4 \times 100} ) {}^{4T}}} \\ \\ \: \: \: \: \: = Rs \: \: 15625 \times ( 1 + \frac{16}{400} ) {}^{4 \times \frac{3}{4} } \\ \\ \: \: \: \: \: = Rs \: \: 15625 \times ( \frac{416}{400} ) {}^{3} \\ \\ \: \: \: \: \: = Rs \: \: 15625 \times \frac{416}{100} \times \frac{416}{100} \times \frac{416}{100} \\ \\ \: \: \: \: \: = Rs \: \: 17576

\pink{\boxed{CI = A - P }}\\ \\ \: \: \: \: \: \: \: = Rs \: \: (17576 - 15625) \\ \\ \: \: \: \: \: \: \: = Rs \: \: 1951 \: \: \red{\boxed{ Ans}}

\purple{\boxed{I \: \: hope \: \: it \: \: will \: \: help \: \: you}}
Similar questions