Hindi, asked by rubyraju8788, 1 year ago

Find the compound interest on 25000 RS at the rate of 12 percent per annum for three years

Answers

Answered by praneethks
1

Explanation:

Compound Interest for 3 years on 25000 ruppees at rate of 12%p.a. =>

25000((1 +  \frac{12}{100})^{3} - 1) =

25000( {1.12}^{3} - 1) =   25000(1.728 - 1)

 = 25000(0.728) = 18200 \: ruppees

Hope it helps you.

Answered by Anonymous
33

Answer:

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Given :}}}}}}\end{gathered}

  • \longrightarrow Principle = Rs.25000
  • \longrightarrow Rate of Interest = 12 per annum
  • \longrightarrow Time = 3 years

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:To Find :}}}}}}\end{gathered}

  • \longrightarrow Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Concept :}}}}}}\end{gathered}

★ Here we have given that the Principal is Rs.25000, Time is 3 years and rate is 15 per annum. As we know that to find the compound interest we need Amount. So firstly we will find out the amount.

★ After finding the amount we will find out the Compound interest by substituting the values in the formula.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Using Formulae :}}}}}}\end{gathered}

\pink{\underline{\boxed{\bf{A={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

\purple{\underline{\boxed{\bf{C.I= A - P }}}}

Where

  • \longrightarrow A = Amount
  • \longrightarrow P = Principle
  • \longrightarrow R = Rate of Interest
  • \longrightarrow T = Time
  • \longrightarrow C.I = Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Solution :}}}}}}\end{gathered}

★ Let us find out the Amount by Substituting the values in the formula :

\dashrightarrow{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}

  • Substituting the values

\dashrightarrow{\sf{Amount={25000{\bigg(1 + \dfrac{12}{100}{\bigg)}^{3}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{(1 \times 100) + 12}{100}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{100 + 12}{100}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{112}{100}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \cancel{\dfrac{112}{100}}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{56}{50}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \cancel{\dfrac{56}{50}}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{28}{25}{\bigg)}^{3}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{28}{25} \times \dfrac{28}{25} \times \dfrac{28}{25}{\bigg)}}}}}}

{\dashrightarrow{\sf{Amount={25000{\bigg( \dfrac{21952}{15625}{\bigg)}}}}}}

{\dashrightarrow{\sf{Amount={25000 \times  \dfrac{21952}{15625}}}}}

{\dashrightarrow{\sf{Amount={\dfrac{25000 \times 21952}{15625}}}}}

{\dashrightarrow{\sf{Amount={\dfrac{548800000}{15625}}}}}

{\dashrightarrow{\sf{Amount={ \cancel{\dfrac{548800000}{15625}}}}}}

{\dashrightarrow{\sf{Amount=Rs.35123.2}}}

\bigstar{\green{\underline{\boxed{\bf{Amount=Rs.35123.2}}}}}

The amonut is Rs.35123.2.

\begin{gathered}\end{gathered}

★ Now, Let us find out the compound interest by substituting the values in the formula :

\dashrightarrow{\sf{Compound \: Interest= A - P }}

  • Substituting the values

{\dashrightarrow{\sf{Compound \: Interest= 35123.2 - 25000 }}}

{\dashrightarrow{\sf{Compound \: Interest=Rs.10123.2 }}}

\bigstar{\orange{\underline{\boxed{\bf{Compound \: Interest=Rs.10123.2 }}}}}

The compound interest is Rs.10123.2.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Learn More :}}}}}}\end{gathered}

\small\red{\underline{\boxed{\bf{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}

\small\red{\underline{\boxed{\bf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

\small\red{\underline{\boxed{\bf{Amount = Principle + Interest}}}}

\small\red{\underline{\boxed{\bf{ Principle=Amount - Interest }}}}

\small\red{\underline{\boxed{\bf{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}

\small\red{\underline{\boxed{\bf{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}

\small\red{\underline{\boxed{\bf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions