Math, asked by sagacioux, 1 day ago

find the compound interest on 3000 at the rate of 6% for one by 1/1/2 year compound half yearly​

Answers

Answered by Anonymous
101

Answer:

Given :

  • ➤ Principle = Rs.3000
  • ➤ Rate = 6% per annum
  • ➤ Time = 1½ year compound half yearly

\begin{gathered}\end{gathered}

To Find :

  • ➤ Amount
  • ➤ Compound Interest

\begin{gathered}\end{gathered}

Using Formulas :

\small\longrightarrow{\underline{\boxed{\pmb{\sf{A= P\bigg(1 + \dfrac{ \frac{R}{2} }{100} \bigg)^{2n}}}}}}

\small\longrightarrow{\underline{\boxed{\pmb{\sf{{C.I=A- P}}}}}}

☼ Where :-

  • ➢ A = Amount
  • ➢ P = Principle
  • ➢ R = Rate
  • ➢ n = Time
  • ➢ C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

☼ Firstly, finding the amount by substituting the given values in the formula :-

\longrightarrow{\sf{A= P\bigg(1 + \dfrac{ \frac{R}{2} }{100} \bigg)^{2n}}}

\longrightarrow{\sf{A= P\bigg(1 + \dfrac{R}{100 \times 2} \bigg)^{2n}}}

\longrightarrow{\sf{A= P\bigg(1 + \dfrac{R}{200} \bigg)^{2n}}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{2 \times  \frac{3}{2} }}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{\frac{6}{2} }}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{\cancel{\frac{6}{2}}}}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{3}}}

{\longrightarrow{\sf{A= 3000\bigg(\dfrac{(1 \times 200) + (6 \times 1)}{200} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg(\dfrac{200 + 6}{200} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg(\dfrac{206}{200} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg(\cancel{\dfrac{206}{200}} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg({\dfrac{103}{100}} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg({\dfrac{103}{100}}   \times \dfrac{103}{100} \times  \dfrac{103}{100}\bigg)}}}

{\longrightarrow{\sf{A= 3000\bigg({\dfrac{1092727}{1000000}}\bigg)}}}

{\longrightarrow{\sf{A= 3000 \times \dfrac{1092727}{1000000}}}}

{\longrightarrow{\sf{A= 3\cancel{000} \times \dfrac{1092727}{1000\cancel{000}}}}}

{\longrightarrow{\sf{A= 3\times \dfrac{1092727}{1000}}}}

{\longrightarrow{\sf{A=  \dfrac{3 \times 1092727}{1000}}}}

{\longrightarrow{\sf{A=  \dfrac{3278181}{1000}}}}

{\longrightarrow{\underline{\underline{\sf{A= Rs.3278.181}}}}}

{\bigstar{\underline{\boxed{\sf{\pink{Amount= Rs.3278.181}}}}}}

∴ The amonut is Rs.3278.181.

\begin{gathered}\end{gathered}

☼ Now, finding the compound interest by substituting the given values in the formula :-

\longrightarrow{\sf{C.I=A- P}}

\longrightarrow{\sf{C.I=3278.181 - 3000}}

\longrightarrow{\underline{\underline{\sf{C.I=Rs.278.181}}}}

{\bigstar{\underline{\boxed{\sf{\pink{Compound \: Interest=Rs.278.181}}}}}}

∴ The compound interest is Rs.278.181.

\begin{gathered}\end{gathered}

Learn More :

\small\circ{\underline{\boxed{\pmb{\sf{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Amount = Principle + Interest}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{ Principle=Amount - Interest }}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}}

 \rule{300}{1.5}

Answered by FallenLove
16

Solution :-

First, we should find the amount of the given values. We have an formula to find the same. It's mentioned below,

Amount :-

\sf\implies Amount = Principle \bigg(1 + \dfrac{Rate}{100} \bigg)^{time(2)}

\sf \implies \:3000 \bigg(1 + \dfrac{6}{100} \bigg)^{1 \dfrac{1}{2} (2)}

\sf \implies 3000 \bigg(1 + \dfrac{6}{100} \bigg)^{\dfrac{3}{2} (2)}

\sf \implies 3000 \bigg(1 + \dfrac{6}{100} \bigg)^{\dfrac{6}{2}}

\sf \implies 3000 \bigg(1 + \dfrac{6}{100} \bigg)^{3}

\sf \implies 3000 \bigg(1 + \dfrac{3}{50} \bigg)^{3}

\sf \implies 3000 \bigg( \dfrac{50 + 3}{50} \bigg)^{3}

\sf \implies 3000 \bigg( \dfrac{53}{50} \bigg)^{3}

\sf \implies 3000 \bigg( \dfrac{53^3}{50^3} \bigg)

\sf \implies3000 \bigg( \dfrac{148877}{125000} \bigg)

\sf \implies 3 \bigg( \dfrac{148877}{125} \bigg)

\sf \implies \dfrac{3 \times 148877}{125} = \dfrac{446631}{125}

\sf \implies \cancel \dfrac{446631}{125} = 3573.048

Now, we can find the compound interest.

Compound interest :-

\sf \leadsto CI = Amount - Principle

\sf \leadsto 3573.048 - 3000

\sf \leadsto Rs \: . \: 573.048

Therefore, the compound interest is ₹573.048.

Similar questions