Math, asked by Vaishnavi4588, 1 year ago

Find the compound interest on $3000 at the rate of 6% per annum for 1 *1/2 years compounded half yearly

Answers

Answered by Anonymous
26
  • If the compound interest is half yearly.

Then

   Amount = p [ 1 + r/200 ] ² ⁿ

                  = $ 3000 [ 1+6/200 ] ³

                   = $ 3000  x 103/100 x 103/100 x 103/100

                    = $ 3000 x 1092727/1000000

                     = $3278 . 181

CI = A - P = $ 3278.181 - 3000 = 278.181


If it helped u.

then

plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

mark me as brainliest.

Thank u.

.........................................................................

Answered by SANDHIVA1974
2

Answer:

Given :

➤ Principle = Rs.3000

➤ Rate = 6% per annum

➤ Time = 1½ year compound half yearly

\begin{gathered}\end{gathered}

To Find :

➤ Amount

➤ Compound Interest

\begin{gathered}\end{gathered}

Using Formulas :

\small\longrightarrow{\underline{\boxed{\pmb{\sf{A= P\bigg(1 + \dfrac{ \frac{R}{2} }{100} \bigg)^{2n}}}}}}

\small\longrightarrow{\underline{\boxed{\pmb{\sf{{C.I=A- P}}}}}}

☼ Where :-

➢ A = Amount

➢ P = Principle

➢ R = Rate

➢ n = Time

➢ C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

☼ Firstly, finding the amount by substituting the given values in the formula :-

\longrightarrow{\sf{A= P\bigg(1 + \dfrac{ \frac{R}{2} }{100} \bigg)^{2n}}}

\longrightarrow{\sf{A= P\bigg(1 + \dfrac{R}{100 \times 2} \bigg)^{2n}}}

\longrightarrow{\sf{A= P\bigg(1 + \dfrac{R}{200} \bigg)^{2n}}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{2 \times  \frac{3}{2} }}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{\frac{6}{2} }}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{\cancel{\frac{6}{2}}}}}

\longrightarrow{\sf{A= 3000\bigg(1 + \dfrac{6}{200} \bigg)^{3}}}

{\longrightarrow{\sf{A= 3000\bigg(\dfrac{(1 \times 200) + (6 \times 1)}{200} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg(\dfrac{200 + 6}{200} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg(\dfrac{206}{200} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg(\cancel{\dfrac{206}{200}} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg({\dfrac{103}{100}} \bigg)^{3}}}}

{\longrightarrow{\sf{A= 3000\bigg({\dfrac{103}{100}}   \times \dfrac{103}{100} \times  \dfrac{103}{100}\bigg)}}}

{\longrightarrow{\sf{A= 3000\bigg({\dfrac{1092727}{1000000}}\bigg)}}}

{\longrightarrow{\sf{A= 3000 \times \dfrac{1092727}{1000000}}}}

{\longrightarrow{\sf{A= 3\cancel{000} \times \dfrac{1092727}{1000\cancel{000}}}}}

{\longrightarrow{\sf{A= 3\times \dfrac{1092727}{1000}}}}

{\longrightarrow{\sf{A=  \dfrac{3 \times 1092727}{1000}}}}

{\longrightarrow{\sf{A=  \dfrac{3278181}{1000}}}}

{\longrightarrow{\underline{\underline{\sf{A= Rs.3278.181}}}}}

{\bigstar{\underline{\boxed{\sf{\pink{Amount= Rs.3278.181}}}}}}

∴ The amonut is Rs.3278.181.

\begin{gathered}\end{gathered}

☼ Now, finding the compound interest by substituting the given values in the formula :-

\longrightarrow{\sf{C.I=A- P}}

\longrightarrow{\sf{C.I=3278.181 - 3000}}

\longrightarrow{\underline{\underline{\sf{C.I=Rs.278.181}}}}

{\bigstar{\underline{\boxed{\sf{\pink{Compound \: Interest=Rs.278.181}}}}}}

∴ The compound interest is Rs.278.181.

\begin{gathered}\end{gathered}

Learn More :

\small\circ{\underline{\boxed{\pmb{\sf{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Amount = Principle + Interest}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{ Principle=Amount - Interest }}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\small\circ{\underline{\boxed{\pmb{\sf{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}}

 \rule{300}{1.5}

Similar questions