Math, asked by SingleJingleI, 5 months ago

find the compound interest on ₹32000 for 1 year at the rate of 20% per annum if the interest is compounded quarterly.​

Answers

Answered by Talentedgirl1
2

Answer:

Principal (P) = ₹ 32,000

Time (t) = 1 Year

Rate (r) = 20%

Amount = Principal × (1 + (r/2 × 100)) n × 2

= ₹ 32,000 × (1 + (20/200)) 1 × 2

= ₹ 32,000 × (11/10)2

= ₹ 32,000 × 11/10 × 11/10

= ₹ 38,720

C.I. = Amount – Principal

= ₹ 38,720 - ₹ 32,000 = ₹ 6,720

Answered by thebrainlykapil
127

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • Find the compound interest on ₹32000 for 1 year at the rate of 20% per annum if the interest is compounded quarterly.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  •  \bf \: Principal \:  =  \: { \boxed{Rs,32000}}
  •  \bf \: Rate \:  =  \: { \boxed{20\%}}
  •  \bf \: Time \:  =  \: { \boxed{1\: Year}}

\red{\boxed{ \sf \blue{ The \: Interest \: is\:  Compounded\:  Quarterly }}}

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: </strong><strong>Solution</strong><strong>:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Amount \: = \: Principal \:  \bigg(1  \:  +  \:  \frac{Rate}{400} \bigg)^{4n}    }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{ Amount \: after \: 1 \: Year \: = \: Principal \:  \bigg(1  \:  +  \:  \frac{Rate}{400} \bigg)^{4n}  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32000 \:  \bigg(1  \:  +  \:  \frac{20}{400} \bigg)^{4\: \times \: 1}  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32000 \:  \bigg(1  \:  +  \:  \frac{ \cancel \green2 \cancel0}{ \cancel \green{40} \cancel0} \bigg)^{4\: \times \: 1}  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32000 \:  \bigg(1  \:  +  \:  \frac{ 1}{20} \bigg)^{4}  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32000 \:  \times  \:  \:  \bigg(   \frac{ 21}{20} \bigg)^{4}  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32000 \:  \times  \:  \:  \bigg(   \frac{ 21}{20} \bigg) \times \bigg(   \frac{ 21}{20} \bigg) \times \bigg(   \frac{ 21}{20} \bigg) \times  \bigg(   \frac{ 21}{20} \bigg)}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32000 \:  \times  \:  \:    \frac{ 21}{20}  \times  \frac{ 21}{20}  \times \frac{ 21}{20} \times   \frac{ 21}{20} }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \: 32 \cancel{000} \:  \times  \:  \:    \frac{ 21}{2 \cancel0}  \times  \frac{ 21}{2 \cancel0}  \times \frac{ 21}{2 \cancel0} \times   \frac{ 21}{20} }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount \:  = \: 32\:  \times  \:  \:    \frac{ 21}{2 }  \times  \frac{ 21}{2 }  \times \frac{ 21}{2 } \times   \frac{ 21}{20} }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount \: = \:     \frac{ 32 \:  \times  \: 21 \:   \times  \: 21 \:  \times  \: 21 \:  \times  \: 21}{2 \:  \times  \: 2 \:  \times  \: 2 \:  \times  \: 20}   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount  \: = \:     \frac{6223392}{160}   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ Amount \:  = \:      \cancel\frac{6223392}{160}   }}\\

\qquad \quad {:} \longrightarrow \sf{\bf{ Amount \: after \: 1 \: Year \: = \:  Rs, 38896.2  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Amount \: = \: Rs, 38896.2   }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Compound \: Interest \: = \: Amount \: - \: Principal  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{Compound \: Interest \: = \: 38896.2 \: - \: 32000 }}\\

\qquad \quad {:} \longrightarrow \sf{\bf{Compound \: Interest \: = \: 6896.2 }}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Compound\: Interest \: = \underline {\underline{ Rs,6896.2}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge:-

\boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf {\textcircled{\footnotesize\textsf{1}}} \:S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times 100$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}} \: \:Profit (gain) = S.P. - C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}} \: \:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions