Find the compound interest on 4500 at 10% per annum for 5 years, compounded half-yearly,
Find the compound interest on 2000 at the rate of 8% per annum for 18 months, when the interest is
calculated half-yearly.
Answers
S O L U T I O N :
- Principal, (P) = Rs.4500
- Rate, (R) = 10% p.a
- Time, (n) = 5 years .
As we know that formula of the compounded half - yearly;
A/q
Now, as we know that compound Interest;
→ C.I. = Amount - Principal
→ C.I. = Rs.7330.02 - Rs.4500
→ C.I. = Rs.2830.02
Thus,
The compound Interest will be Rs.2830.02 .
Again,
- Principal, (P) = Rs.2000
- Rate, (R) = 8% p.a
- Time, (n) = 18 months [18/12 = 3/2 years ]
A/q
Now, as we know that compound Interest;
→ C.I. = Amount - Principal
→ C.I. = Rs.2249.72 - Rs.2000
→ C.I. = Rs.249.72
Thus,
The compound Interest will be Rs.249.72 .
Step−by−stepexplanation:
Let 'a' be any positive integer and b = 4.
Using Euclid Division Lemma,
a = bq + r [ 0 ≤ r < b ]
⇒ a = 3q + r [ 0 ≤ r < 4 ]
Now, possible value of r :
r = 0, r = 1, r = 2, r = 3
CASEI:
If we take, r = 0
⇒ a = 4q + 0
⇒ a = 4q
On cubing both sides,
⇒ a³ = (4q)³
⇒ a³ = 4 (16q³)
⇒ a³ = 9m [16q³ = m as integer]
CASEII:
If we take, r = 1
⇒ a = 4q + 1
On cubing both sides ;
⇒ a³ = (4q + 1)³
⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )
⇒ a³ = 64q³ + 1 + 48q² + 12q
⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1
⇒ a³ = 4m + 1 [ Take m as some integer ]
CASEIII:
If we take r = 2,
⇒ a = 4q + 2
On cubing both sides ;
⇒ a³ = (4q + 2)³
⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )
⇒ a³ = 64q³ + 8 + 96q² + 48q
⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )
⇒ a³ = 4m [Take m as some integer]
CASEIV:
If we take, r = 3
⇒ a = 4q + 3
On cubing both the sides;
⇒ a³ = (4q + 3)³
⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)
⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q
⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3
⇒ a³ = 4m + 3 [Take m as some integer]
Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.
__________________
Identity used ;
( a + b )³ = a³ + b³ + 3ab ( a + b )