Math, asked by ishitachhabra4, 3 months ago


Find the compound interest on 5000 at 8% per annum for 3 years.
for 3 years.​

Answers

Answered by rittikapannase
4

Answer:

Principal =Rs. 5000

Time =3 years

Rate =8%

Amount compounded annually

=5000⋅(1+

100

8

)

3

=5000⋅

100

108

100

108

100

108

=Rs. 6298.56

Compound interest =Rs. 6298.56−Rs. 5000

=Rs. 1298.56.

Answered by DüllStâr
143

Correct Question:

 \\

Find the compound interest on ₹ 5000 at 8% per annum for 3 years.

 \\

Given:

 \\

  • Principal = ₹5000

 \\

  • Rate = 8%

 \\

  • time = 3 years

 \\

To find:

 \\

  • Compound interest

 \\

Solution:

 \\

For 1 st year:

 \\  \\

Here :

  • P = ₹5000
  • R = 8%
  • T = 1 year

 \\  \\

we know:

 \\  \\

 \bigstar \boxed{ \rm{}Simple \: Interest = \frac{P \times R \times T}{100}  }

 \\  \\

By using this formula we can find value of Simple interest of 1st year

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest = \dfrac{P \times R \times T}{100}

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest = \dfrac{5000 \times 8 \times 1}{100}

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest = \dfrac{50\cancel0\cancel0 \times 8 \times 1}{1\cancel0\cancel0}

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest = \dfrac{50 \times 8\times 1}{1}

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest =50 \times 8\times 1

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest =50 \times 8

 \\  \\

 \hookrightarrow\sf{}Simple \: Interest =rs. \: 400

 \\  \\

Now Let's find Amount of 1 year

 \\  \\

We know:

 \\  \\

 \bigstar \boxed{ \rm{}Amount = Simple \: Interest + P}

 \\  \\

By using this formula we can find value of Amount

 \\  \\

 \hookrightarrow\sf{}Amount = Simple \: Interest + P

 \\  \\

 \hookrightarrow\sf{}Amount = 400 + 5000

 \\  \\

 \hookrightarrow\sf{}Amount =rs \: 5400

 \\  \\

For 2 year:

 \\  \\

Here:

  • P = 8400
  • R = 8
  • T = 1

 \\  \\

we know:

 \\  \\

 \bigstar \boxed{ \rm{}Simple \: Interest = \frac{P \times R \times T}{100}  }

 \\  \\

By using this formula we can find value of Simple interest of 2st year

 \\  \\

 \leadsto\sf{}Simple \: Interest = \dfrac{P \times R \times T}{100}

 \\  \\

\leadsto\sf{}Simple \: Interest = \dfrac{54\cancel0\cancel0 \times 8 \times 1}{1\cancel0\cancel0}

 \\  \\

\leadsto\sf{}Simple \: Interest = \dfrac{54\times 8\times 1}{1}

 \\  \\

\leadsto\sf{}Simple \: Interest =54\times 8\times 1

 \\  \\

\leadsto\sf{}Simple \: Interest =54\times 8

 \\  \\

\leadsto\sf{}Simple \: Interest =rs \: 432

 \\  \\

Now Let's find Amount of 2 year

 \\  \\

 \bigstar \boxed{ \rm{}Amount = Simple \: Interest + P}

 \\  \\

 \leadsto\sf{}Amount = Simple \: Interest + P

 \\  \\

 \leadsto\sf{}Amount = 5400+432

 \\  \\

 \leadsto\sf{}Amount  = rs \: 5832

 \\  \\

For 3rd year:

 \\  \\

Here:

  • P = 5832
  • R = 8%
  • T = 1 years

 \\  \\

we know:

 \\  \\

 \bigstar \boxed{ \rm{}Simple \: Interest = \frac{P \times R \times T}{100}  }

 \\  \\

By using this formula we can find value of Simple interest

\\\\

 \dashrightarrow\sf{}Simple \: Interest = \dfrac{P \times R \times T}{100}

 \\  \\

 \dashrightarrow\sf{}Simple \: Interest = \dfrac{5832 \times 8 \times 1}{100}

 \\  \\

 \dashrightarrow\sf{}Simple \: Interest = \dfrac{5832 \times 8 }{100}

 \\  \\

 \dashrightarrow\sf{}Simple \: Interest = \dfrac{46656 }{100}

 \\  \\

 \dashrightarrow\sf{}Simple \: Interest =rs \: 466.56

 \\  \\

Now Let's find Amount of 3 year

 \\  \\

 \bigstar \boxed{ \rm{}Amount = Simple \: Interest + P}

 \\  \\

 \dashrightarrow\sf{}Amount = Simple \: Interest + P

 \\  \\

 \dashrightarrow\sf{}Amount = 466.56+5832

 \\  \\

 \dashrightarrow\sf{}Amount = 6298.56

 \\  \\

Finally Let's find Compound Interest:

 \\  \\

we know:

 \\  \\

 \bigstar \boxed{ \rm{}Compound ~ Interest = Final ~ Amount  -  Principle ~ of ~ 1~ year}

 \\  \\

  \dashrightarrow \sf{Compound ~ Interest = 6298.56 -  5000} \\

 \\  \\

  \dashrightarrow  \underline{ \boxed{\sf{Compound ~ Interest =rs \:  1298.56}}}\\

 \\  \\

  \therefore \underline{ \sf{Compound ~ Interest = \textsf{ \textbf{rs \:  1298.56}}}}

Similar questions