Math, asked by krishnakrishnabol2, 1 day ago

Find the compound interest on a sum of 12,000 at the rate of 8% per annum for 1 year compounded quarter 5. ​

Answers

Answered by Anonymous
55

Given :

  • Principal = Rs.12000
  • Rate = 8 %
  • Time = 1 year
  • Compound = Quarterly

 \\ \rule{200pt}{3pt}

To Find :

  • Compound Interest = ?

 \\ \rule{200pt}{3pt}

Solution :

 \dag \; {\underline{\pmb{\frak{ Formula \; Used \; :- }}}}

  •  {\underline{\boxed{\pink{\sf{ A = P \bigg\lgroup 1 + \dfrac{R}{400} \bigg\rgroup ^{4n} }}}}}

  •  {\underline{\boxed{\pink{\sf{ C.I = Amount - Principal }}}}}

Where :

  • ➟ A = Amount
  • ➟ C.I = Compound Interest
  • ➟ P = Principal
  • ➟ R = Rate
  • ➟ n = Time

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Calculating \; the  \; Amount \; :- }}}}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = P \bigg\lgroup 1 + \dfrac{R}{400} \bigg\rgroup ^{4n} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1 + \dfrac{8}{400} \bigg\rgroup ^{4 \times 1} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1 + \dfrac{8}{400} \bigg\rgroup ^{4} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1 + \cancel\dfrac{8}{400} \bigg\rgroup ^{4} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1 + \cancel\dfrac{4}{200} \bigg\rgroup ^{4} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1 + \cancel\dfrac{2}{100} \bigg\rgroup ^{4} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1 + 0.02 \bigg\rgroup ^{4} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \bigg\lgroup 1.02 \bigg\rgroup ^{4} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \times 1.02 \times 1.02 \times 1.02 \times 1.02  } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { A = 12000 \times 1.08243216  } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; {\qquad{\green{\sf { Amount = ₹  \; 12989.18  }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Calculating \; the  \; Compound \; Interest \; :- }}}}

 \begin{gathered} \; \implies \; \; \sf { Compound \; Interest = Amount - Principal } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; \sf { Compound \; Interest = 12989.18 - 12000 } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; {\qquad{\red{\sf { Compound \; Interest = ₹ \; 989.18  }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Therefore \; :- }}}}

❛❛ Compound Interest on this sum of money is 989.18 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by kvalli8519
4

Refer the given attachment

Attachments:
Similar questions