History, asked by Anonymous, 19 days ago

find the compound interest on a sum of RS 12000 at the rate of 8% per annum for 1 year compounded quarterly. please step by step ​

Answers

Answered by Anonymous
55

Compound interest

When the interest accumulated from time to time till now is calculated in the principal amount, then it is called compound interest.

Compound interest CI received on a certain sum of money of Rs P invested at the rate of r % per annum compounded quarterly for n years is as follows:

\boxed{\:\sf{CI = P {\bigg[1 + \dfrac{R}{400} \bigg]}^{4n} - P\:}}

Where,

  • CI - Compund Interest
  • P - Principal Amount
  • R - Rate of Interest
  • n - Time Period.

As per the provided information in the given question, we have been given that,

  • Principal amount, P = Rs. 12000
  • Rate of interest, R = 8% per annum
  • Time period, n = 1 year
  • Compound interest, CI = ?

Solution:

By substituting the given values in the formula, we get the following results:

CI = P{\bigg[1 + \dfrac{R}{400} \bigg]}^{4n} - P

\implies CI = 12000 {\bigg[1 + \dfrac{8}{400} \bigg]}^{4\times1} - 12000

\implies CI = 12000 {\bigg[1 + \cancel{\dfrac{8}{400}} \bigg]}^{4} - 12000

\implies CI = 12000 {\bigg[1 + \dfrac{1}{50} \bigg]}^{4} - 12000

\implies CI = 12000 {\bigg[ \dfrac{50 + 1}{50} \bigg]}^{4} - 12000

\implies CI = 12000 {\bigg[ \dfrac{51}{50} \bigg]}^{4} - 12000

\implies CI = 12000 \times \dfrac{51^4}{50^4} - 12000

\implies CI = 12\cancel{000} \times \dfrac{6765201}{6250\cancel{000}} - 12000

\implies CI = \cancel{12} \times \dfrac{6765201}{\cancel{6250}} - 12000

\implies CI = 0.00192 \times 6765201 - 12000

\implies CI = 12989.18 - 12000

\implies CI = 12989.18 - 12000

\implies \boxed{\textsf{\textbf{CI = 989.1859}}}

Therefore, the compound interest is Rs. 989.1859.

Answered by Anonymous
87

 \\ \large{\underline{\underline{\maltese{\red{\pmb{\sf{ \; Given \; :- }}}}}}}

  • Principal = 12000
  • Rate = 8 %
  • Time = 1 year
  • Compounded = Quarterly

 \\ {\underline{\rule{200pt}{3pt}}}

 \\ \large{\underline{\underline{\maltese{\color{darkblue}{\pmb{\sf{ \; To \; Find \; :- }}}}}}}

  • Compound Interest = ?

 \\ {\underline{\rule{200pt}{3pt}}}

 \\ \large{\underline{\underline{\maltese{\color{maroon}{\pmb{\sf{ \; Solution \; :- }}}}}}}

Formula Used :

  • Amount :

 {\pink{\star}} \; {\pmb{\underline{\overline{\boxed{\orange{\sf{ Amount = Principal \bigg\{ 1 + \dfrac{Rate}{400} \bigg\}^{4 \times Time} }}}}}}} \; {\pink{\star}}

 \\

  • Compound Interest :

 {\pink{\star}} \; {\pmb{\underline{\overline{\boxed{\orange{\sf{ Compound \; Interest = Amount - Principal }}}}}}} \; {\pink{\star}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Amount :

 {\longmapsto{\qquad{\sf{ Amount = Principal \bigg\{ 1 + \dfrac{Rate}{400} \bigg\}^{4 \times Time} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1 + \dfrac{8}{400} \bigg\}^{4 \times 1} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1 + \dfrac{8}{400} \bigg\}^{4} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1 + \cancel\dfrac{8}{400} \bigg\}^{4} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1 + \cancel\dfrac{4}{200} \bigg\}^{4} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1 + \cancel\dfrac{2}{100} \bigg\}^{4} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1 + 0.02 \bigg\}^{4} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \bigg\{ 1.02 \bigg\}^{4} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \times 1.02 \times 1.02 \times 1.02 \times 1.02  }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Amount = 12000 \times 1.08243216  }}}} \\ \\ \ {\qquad \; \; \; \; {\therefore \; {\underline{\boxed{\pmb{\green{\sf{ Amount = ₹  \; 12989.185 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Compound Interest :

 {\implies{\qquad{\sf{ Compound \; Interest = Amount - Principal }}}} \\ \\ \ {\implies{\qquad{\sf{ Compound \; Interest = 12989.185 - 12000 }}}} \\ \\ \ {\qquad \; \; \; \; {\therefore \; {\underline{\boxed{\pmb{\red{\sf{Compound \; Interst = ₹  \; 989.185 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ Compound Interest on this sum of money is ₹ 989.185 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions