Math, asked by smarthx, 1 year ago

find the compound interest on a sum of rupees 12000 @ 8% per annum for 1 year compounded quarterly

Answers

Answered by Rose08
14

\sf{\huge{\underline{\mathfrak{ Answer :- }}}}

\bf\huge\boxed{Rs. 989.18}

\sf\huge\underline\purple{Explanation :-}

Given :

Principal - Rs. 12000

Rate - 8%

Time - 1 year

We know that,

\sf\boxed{\star Amount = P {(1 +  \dfrac{R}{100}) }^{n}}

In the case of quarterly,

\mathsf{\longrightarrow Amount = 12000 {(1 +  \dfrac{8}{100 \times 4}) }^{4}}

\mathsf{\longrightarrow 12000 {(1 +  \dfrac{2}{100}) }^{4}}

\mathsf{\longrightarrow 12000 {(1 +  \dfrac{2}{100}) }^{4}}

\mathsf{\longrightarrow 12000 {(\dfrac{100 + 2}{100}) }^{4}}

\mathsf{\longrightarrow 12000 {(\dfrac{102}{100}) }^{4}}

\mathsf{\longrightarrow 12000 \times  \frac{102}{100}  \times  \frac{102}{100}  \times  \frac{102}{100}  \times  \frac{102}{100}}

\mathsf{\longrightarrow 12989.18}

Therefore, Compound Interest :-

= (Amount - Principal)

= Rs. (12989.18 - 12000.00)

= Rs. 989.18

Hence, The compound interest compounded quarterly is Rs. 989.18

Answered by Narendragajjar1234
4

P = 12000

R = 8 %

N = 1 year

Amount = p(1+R/100)n

= 12000(1+2/100)4

= 12000(102/100)4

= 12000×102/100×102/100×102/100×102/100

= 12×102×102×102×102/10×100×100

= 1298918592/100000

=12989.19

I=A-P

= 12989.19-12000

=989.19 Answer

Hope it helps you.....

Similar questions