Math, asked by soumendas7877, 1 year ago

Find the compound interest on R.s. 3200at 2.5p.a for 2 years,compounded annually

Answers

Answered by Anonymous
61

AnswEr :

  • Principal = Rs. 3200
  • Rate = 2.5% p.a.
  • Time = 2 Years

 \Longrightarrow\mathsf{CI = P \bigg(1 + \dfrac{r}{100}   \bigg)^{t}  - 1}

 \Longrightarrow\mathsf{CI = 3200 \bigg(1 + \dfrac{2.5}{100}   \bigg)^{2}  - 1}

 \Longrightarrow\mathsf{CI = 3200 \bigg(1 + \dfrac{1}{40}   \bigg)^{2}  - 1}

 \Longrightarrow\mathsf{CI = 3200 \bigg( \dfrac{41}{40}   \bigg)^{2}  - 1}

 \Longrightarrow\mathsf{CI = 3200 \bigg( \dfrac{1681}{1600}  - 1  \bigg) }

 \Longrightarrow\mathsf{CI =  \cancel{3200} \times  \dfrac{81}{ \cancel{1600}} }

 \Longrightarrow\mathsf{CI =Rs. \:(2 \times 81)}

 \Longrightarrow\mathsf{CI =Rs. \: 168}

 \therefore Compound Interest is Rs. 168

Answered by Anonymous
27

SOLUTION:-

════════════

Given:

  • Principal,[P]= Rs.3200
  • Rate,[R]= 2.5% p.a.
  • Time,[n]= 2 years.

To find:

══════

The compound Interest.

Explanation:

══════════

Formula: Compound Interest

Formula: Amount- Principal

&

A = P(1 +  \frac{R}{100 } ) {}^{n}

According to the question:

A = 3200(1 +  \frac{2 .5}{100} ) {}^{2}  \\  \\ A=3200(1 +  \frac{25}{1000} ) {}^{2}  \\  \\ A= 3200( \frac{1000 + 25}{1000} ) {}^{2}  \\  \\ A = 3200( \frac{1025}{1000} ) {}^{2}  \\  \\ A = 3200 \times  \frac{1025}{1000}  \times  \frac{1025}{1000}  \\  \\ A =  \frac{33620000}{10000}  \\  \\ A = Rs.3362

Now,

C.I= Rs.3362 - Rs.3200

C.I.= Rs.162

:)

Similar questions