Math, asked by shivkumarsingh1102, 8 months ago

find the compound interest on Rs 1000 at 8 percent p.a. for 1 integer 1/2 years when the interest is compounded half yearly.​

Answers

Answered by Anonymous
7

Question :

Find the compound interest on Rs 1000 at 8 percent p.a. for 1 and ½ years when the interest is compounded half yearly.

\\

To Find :

The Compound Interest.

\\

We Know :

\bullet Amount formula :

(Compounded Semi - Annually)

\:\:\:\:\:\:\:\:\:\blue{\sf{\underline{\boxed{A = P\left(1 + \dfrac{R}{200}\right)^{2n}}}}}

Where,

  • A = Amount
  • P = Principal
  • R = Rate of interest p.a.
  • n = Time period

\bullet Compound Interest = Amount - Principal

\\

Solution :

Given :

  • Principal = ₹ 1000

  • Rate = 8 %

  • Time = 1½ years = 3/2 years

To Find the Amount yield :

Using the Amount Formula and Substituting the values in it ,we get :

\:\:\:\:\:\:\:\:\:\purple{\sf{A = P\left(1 + \dfrac{R}{200}\right)^{2n}}} \\ \\ \\ \\ \implies \sf{A = 1000\left(1 + \dfrac{8}{200}\right)^{2 \times \dfrac{3}{2}}} \\ \\ \\ \\ \implies \sf{A = 1000\left(\dfrac{200 + 8}{200}\right)^{\not{2} \times \dfrac{3}{\not{2}}}} \\ \\ \\ \\ \implies \sf{A = 1000\left(\dfrac{208}{200}\right)^{3}} \\ \\ \\ \\ \implies \sf{A = 1000\left(\dfrac{104}{100}\right)^{3}} \\ \\ \\ \\ \implies \sf{A = 1000\left(\dfrac{52}{50}\right)^{3}} \\ \\ \\ \\ \implies \sf{A = 1000\left(\dfrac{26}{25}\right)^{3}} \\ \\ \\ \\

\implies \sf{A = 1000 \times \dfrac{26}{25} \times \dfrac{26}{25} \times \dfrac{26}{25}} \\ \\ \\ \\ \implies \sf{A = 1000 \times \dfrac{26}{25} \times \dfrac{26}{25} \times \dfrac{26}{25}} \\ \\ \\ \\ \implies \sf{A = 40 \times 26 \times \dfrac{26}{25} \times \dfrac{26}{25}} \\ \\ \\ \\ \implies \sf{A = 8 \times 26 \times \dfrac{26}{25} \times \dfrac{26}{5}} \\ \\ \\ \\ \implies \sf{A = \dfrac{8 \times 26 \times 26}{5 \times 25}} \\ \\ \\ \\ \implies \sf{A = \dfrac{140608}{125}} \\ \\ \\ \\ \implies \sf{A = 1124.86(approx.)} \\ \\ \\ \\ \therefore \purple{\sf{A = 1124.86}}

Hence , the Amount yield is ₹ 1124.86.

\\

Compound Interest :

We Know that ,

CI = Amount - Principal

  • Amount = ₹ 1124.86

  • Principal = ₹ 1000

Substituting the values in the for Formula ,we get :

==> CI = ₹ (1124.86 - 1000)

==> CI = ₹ 124.86

Hence , the Compound Interest is ₹ 124.86

Additional information :

  • Simple Interest = \bf{\dfrac{P \times R \times t}{100}}

  • Principal = \bf{\dfrac{100 \times SI}{R \times t}}

  • Rate = \bf{\dfrac{100 \times SI}{P \times t}}

  • Time = \bf{\dfrac{100 \times SI}{R \times P}}
Similar questions