Math, asked by arunakhuman0, 2 months ago

Find the compound interest on Rs. 10000
for 3yrs at 5% p.a?
Select one:
a. 1576
b. 1500
c. 10000
d. 1543​

Answers

Answered by Anonymous
23

Given:

  • Rs.10000 is conpounded for 3years at 5% p.a

To Find:

  • The compound interest on the money.

Solution:

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag \bigg[ \bf \: A = P(1 +  \frac{r}{100} ) {}^{n} \bigg]

Where,

  • A stands for amount
  • P stands for principal
  • R stands for rate of interest
  • N stands for time

Here,

  • principal = 10000
  • Rate = 5%
  • Time = 3 years

{ \underline{ \bf{ \bigstar \: substituting \: the \: values \: we \: get : }}}

\\{ : \implies}\bigg[ \bf \: A = P(1 +  \frac{r}{100} ) {}^{n} \bigg]   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\  \\ { : \implies}\bigg[ \bf \: A = 10000(1 +  \frac{5}{100} ) {}^{3} \bigg] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies}\bigg[ \bf \: A = 10000( \frac{100}{100}  +  \frac{5}{100} ) {}^{3} \bigg] \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ { : \implies}\bigg[ \bf \: A = 10000( \frac{105}{100} ) {}^{3} \bigg] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies}\bigg[ \bf \: A = 10000 \times  \frac{105}{100} \times  \frac{105}{100}   \times  \frac{105}{100} \bigg] \\  \\  \\ { : \implies} \bf \: A = 105 \times 105 \times  \frac{105}{100}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \\  \\  \\ { : \implies} \bf A =  \frac{1157625}{100}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \bf { \underline{ \boxed{ \pmb{ \frak{A = 11576.25}}}} \star} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the amount is Rs.11576.25

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag \bigg[ \bf \: compund \: intrest  =  A  -  P\bigg]

Here,

  • Amount = 11576.25
  • Principal = 10000

Substituting we get,

➼ C.I = A - P

➼ C.I = 11576.25 - 1000

➼ C.I = 1576.25

  • When rounded you get,

➱ C.I = Rs.1576

Hence,

  • option ( a ) Rs. 1576 is correct

More to know:-

  • Formula to find amount when compounded half yearly

{ : \implies}\bigg[ \bf \: A = P(1 +  \frac{r}{200} ) {}^{2n} \bigg]

  • Formula to find amount when compounded quarterly

{ : \implies}\bigg[ \bf \: A = P(1 +  \frac{r}{400} ) {}^{3n} \bigg]

  • Formula to find amount at different rate of intrests

{ : \implies}\bf \: A = P  \bigg[1 +  \frac{ r_{1} }{100} \bigg]\bigg[1 +  \frac{ r_{2} }{100} \bigg]\bigg[1 +  \frac{ r_{3} }{100} \bigg]

Answered by thebrainlykapil
44

Given :

  • Principal (P) = Rs 10000
  • Time (n) = 3 years
  • Rate (R) = 5% per annum

 \\

To Find :

  • Compound interest

 \\

Formulas :

\red \bigstar \: {\underline{\boxed{\mathcal {\pmb{\quad Amount \: = \: Principal \: \times \bigg(\:1 \: + \: \dfrac{Rate}{100}\bigg)^{n}\quad}}}}}

 \\

\red \bigstar \: {\underline{\boxed{\mathcal {\pmb{\quad Compound \: Interest \: = \: Amount \: - \: Principal \quad}}}}}

 \\

Solution :

{:} \longrightarrow \sf \: Amount \: = \: Principal \: \times \bigg(\:1 \: + \: \dfrac{Rate}{100}\bigg)^{n} \\ \\ {:} \longrightarrow \sf \: Amount \: = \: 10000 \: \times \bigg(\:1 \: + \: \dfrac{5}{100}\bigg)^{3} \\ \\ {:} \longrightarrow \sf \: Amount \: = \: 10000 \: \times \bigg(\dfrac{105}{100}\bigg)^{3} \\ \\ {:} \longrightarrow \sf \: Amount \: = \: 10000\: \times \: \dfrac{105}{100} \: \times \: \dfrac{105}{100} \: \times \: \dfrac{105}{100} \\ \\  {:} \longrightarrow \sf \: Amount \: = \: 1\cancel{0000} \: \times \: \dfrac{105}{1 \cancel{00}} \: \times \: \dfrac{105}{1 \cancel{00}} \: \times \: \dfrac{105}{100} \\ \\ {:} \longrightarrow \sf \: Amount \: = \:  \dfrac{ 105 \:  \times  \: 105 \:  \times  \: 105}{100} \\ \\  {:} \longrightarrow \sf \: Amount \: = \:  \dfrac{105 \:  \times  \: 11025}{ 100} \\ \\ {:} \longrightarrow \sf \: Amount \: = \:  \dfrac{1157625}{ 100} \\ \\  {:} \longrightarrow \underline{\boxed{\sf \: Amount \: = \: Rs \: 11576.25}} \: \blue \bigstar\\ \\

________________

\longmapsto {\pmb{ Compound \: Interest \: = \: Amount \: - \: Principal} } \\ \\ \longmapsto {\sf{ Compound \: Interest \: = \: 11576.25 \: - \: 10000} } \\ \\ \longmapsto \underline{\boxed{\pmb{ \red{ Compound \: Interest \: = \:Rs \:1,576.25} }}}

________________

\qquad \therefore\: \sf{ Amount \: = \underline {\underline{ Rs \: 11576.25}}}\\

\qquad \therefore\: \sf{ Compound \: Interest\: = \underline {\underline{ Rs \: 1,576.25}}}\\

________________

Similar questions