Accountancy, asked by nainaaankhein, 1 day ago

Find the compound interest on Rs. 2,500 for 15 months at 8% compounded quarterly.

Answers

Answered by StarFighter
76

Answer:

Given :-

  • A sum of Rs 2500 for 15 months at 8% compound quarterly.

To Find :-

  • What is the compound interest.

Formula Used :-

\clubsuit Amount formula when the interest is compounded quarterly :

\bigstar \: \: \: \:  \sf\boxed{\bold{\pink{A =\: P\Bigg[1 + \dfrac{\dfrac{r}{4}}{100}\Bigg]^{4n}}}}\: \: \: \: \: \bigstar \\

where,

  • A = Amount
  • P = Principal
  • r = Rate of Interest
  • n = Time Period

\clubsuit Compound Interest Formula :

\bigstar \: \: \: \: \sf\boxed{\bold{\pink{Compound\: Interest =\: A - P}}}\: \: \: \: \bigstar\\

where,

  • A = Amount
  • P = Principal

Solution :-

Given :

✫ Principal = Rs 2500

✫ Time = \sf 15\: months =\: \dfrac{15}{12}\: yr =\: \bf{\dfrac{5}{4}\: yr}\\

✫ Rate of Interest = 8%

First we have to find the amount :

\mapsto \bf A =\: P\Bigg[1 + \dfrac{\dfrac{r}{4}}{100}\Bigg]^{4n}\\

\mapsto \sf A =\: 2500\Bigg[1 + \dfrac{\dfrac{8}{4}}{100}\Bigg]^{(\cancel{4} \times \frac{5}{\cancel{4}})}\\

\mapsto \sf A =\: 2500\bigg[1 + \dfrac{\cancel{8}}{\cancel{4}} \times \dfrac{1}{100}\bigg]^5\\

\mapsto \sf A =\: 2500\bigg[1 + \dfrac{2}{1} \times \dfrac{1}{100}\bigg]^5\\

\mapsto \sf A =\: 2500\bigg[1 + \dfrac{2}{100}\bigg]^5\\

\mapsto \sf A =\: 2500\bigg[\dfrac{100 + 2}{100}\bigg]^5\\

\mapsto \sf A =\: 2500\bigg[\dfrac{102}{100}\bigg]^5\\

\mapsto \sf A =\: 2500[1.02]^5

\mapsto \sf A =\: 2500[1.02 \times 1.02 \times 1.02 \times 1.02 \times 1.02]\\

\mapsto \sf A =\: 2500 \times 1.104

\mapsto \sf\bold{\purple{A =\: Rs\: 2760}}

Now, we have to find the compound interest :

Given :

  • Amount = Rs 2760
  • Principal = Rs 2500

According to the question by using the formula we get,

\dashrightarrow \bf Compound\: Interest =\: A - P

\dashrightarrow \sf Compound\:  Interest =\: Rs\: 2760 - Rs\: 2500\\

\dashrightarrow \sf\bold{\red{Compound\: Interest =\: Rs\: 260}}

\therefore The compound interest is Rs 260 .

Answered by VelvetBlush
0

\sf\red{A= P {(1 +  \frac{ \frac{r}{4} }{100} )}^{4n} }

\implies\sf{A=2500 {(1 +  \frac{ \frac{8}{4} }{100} )}^{(4 \times  \frac{5}{4} )} }

\implies\sf{A=2500{(1 +  \frac{8}{4}  \times  \frac{1}{100}) }^{5} }

\implies\sf{A = 2500 {(1 +  \frac{2}{1}  \times  \frac{1}{100} )}^{5} }

\implies\sf{A=2500 {(1 +  \frac{2}{100}) }^{5} }

\implies\sf{A=2500 {( \frac{100 + 2}{100} )}^{5}}

\implies\sf{A=2500{( \frac{102}{100} )}^{5} }

\implies\sf{A=2500 {(1.02)}^{5} }

\implies\sf{A=2500(1.02×1.02×1.02×1.02×1.02)}

\implies\sf{2500×1.104}

\implies\sf{₹2,760}

\sf\red{Compound \: Interest = A-P}

\implies\sf{₹2,760-₹2,500}

\implies\sf{₹260}

Similar questions