Math, asked by Shiny562, 2 months ago

Find the compound interest on Rs.2000 at the rate of 10%p.a.for 2 years.

Answers

Answered by Anonymous
120

Given:-

  • Principal = 2000rupees
  • Rate = 10%
  • Time = 2 years

To Find:-

  • Compound Interest

Solution:-

we have,

  • P = 2000rupees
  • R = 10%
  • T = 2 years

Using Formula:

 \:  \:  \sf \: c.i = p \times { {(1 +  \frac{r}{100} )}^{t}  - 1}

Now substitute the values,

 \:  \:  \sf \: c.i = 2000 \times  {(1 +  \frac{10}{100}) }^{2}  - 1 \\  \\  \:  \:  \sf \: c.i = 2000 \times ( \frac{121  - 100}{100} ) \\  \\  \:  \:  \sf \: c.i = 2000 \times  \frac{21}{100}  \\  \\  \:  \:  \sf \: c.i = 420rupees

Hence, Compound Interest is 420 rupees.

Answered by Anonymous
136

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Given:}}}}}}}\end{gathered}

  • ➤ Principle = Rs.2000
  • ➤ Rate = 10%
  • ➤ Time = 2 Years

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{To Find:}}}}}}}\end{gathered}

  • ➤ Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Using Formula:}}}}}}}\end{gathered}

{\dag{\underline{\boxed{\sf{Amount ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest = Amount- Principle }}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Full Solution:}}}}}}}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{Firstly,Finding \: the \: Amount }}}}}}

\quad {:\implies{\sf{Amount = \bf{P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

\quad {:\implies{\sf{Amount = \bf{2000{\bigg(1 + \dfrac{10}{100}{\bigg)}^{2}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg(\dfrac{1 \times 100 + 10}{100}{\bigg)}^{2}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg(\dfrac{100 + 10}{100}{\bigg)}^{2}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg( \dfrac{110}{100}{\bigg)}^{2}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg({\cancel\dfrac{110}{100}}{\bigg)}^{2}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg( \dfrac{11}{10}{\bigg)}^{2}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg( \dfrac{11}{10} \times  \dfrac{11}{10}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000{\bigg( \dfrac{121}{100}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount = \bf{2000 \times {\dfrac{121}{100}}}}}}

\quad {:\implies{\sf{Amount = \bf{\cancel{2000} \times {\dfrac{121}{\cancel{100}}}}}}}

\quad {:\implies{\sf{Amount = \bf{20\times{121}}}}}

\quad {:\implies{\sf{Amount = \bf{{2420}}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{purple}{Amount = {Rs.2420}}}}}}}\end{gathered}

  • Hence, The Amount is Rs.2420.

\begin{gathered}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{ Now,Finding \: The \: Compound \: Interest }}}}}}

\quad{: \implies{\sf{Compound \: Interest = \bf{Amount- Principle }}}}

  • Substituting the values

\quad{: \implies{\sf{Compound \: Interest = \bf{2420-2000}}}}

\quad{: \implies{\sf{Compound \: Interest = \bf{420}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{purple}{Compound Interest = Rs.420}}}}}}\end{gathered}

  • Henceforth,The Compound Interest is Rs.420.

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}


Anonymous: Good!
mddilshad11ab: Perfect explaination ✔️
Similar questions